首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
Hydrologic disturbance reduces biological integrity in urban streams   总被引:1,自引:0,他引:1  
The impact of urbanization on stream ecosystems is linked by land cover changes to the alteration of the natural hydrology and subsequent physical disruption of stream biota and habitat. Seasonal floods are part of the natural disturbance regime of many streams, but urbanization increases their frequency and magnitude. This study evaluated the impact of hydrologic disturbance on fish and aquatic macroinvertebrates in 81 (56 urban/25 reference) Ohio streams. Hydrologic variables included annual and monthly 24-h rainfall maxima and computed annual peak discharge, with computation supported by GIS-based drainage area delineation and land cover characterization. Ohio biological criteria for fish and macroinvertebrates measured during the late spring and summer were negatively impacted by annual peak discharge in urban streams as compared to reference streams. Results support the application of stormwater best management practices as part of stream restoration efforts to mitigate urbanization impacts to fish and macroinvertebrates.  相似文献   

2.
Restoration of urban streams and rivers has increased rapidly in developing countries in recent years. Estimating river health provides a new perspective on evaluating the ecological conditions of streams and rivers. The Suzhou Creek restoration project in Shanghai, China is a milestone for environmental protection. Based on the environmental and ecological data, including 17 indicators in five categories, collected from March 11 to April 20, 2007, the river health index (RHI) for Suzhou Creek was constructed and analysed to quantify the ecosystem of this urban river after a restoration project. The RHI scores of 34 sites ranged from 19.24 to 33.36, i.e. from poor to good. There were no significant RHI differences among stream orders, while differences in land use resulted in significant differences in channel flow status (B12), channel alteration (B21), channel sinuosity (B22), bank stability (B23), bank profile type (B25) and riparian vegetative zone width (B31). River restoration led to improved hydrological condition and channel physical form, while ammonia nitrogen (B44) and indicator scores of the presence of macro-invertebrate families (B51) were the lowest of any indicator. This case study supports the use of river health assessment as a supplement to water quality analysis in China.  相似文献   

3.
Prompt assessment and management actions are required if we are to reduce the current rapid loss of habitat and biodiversity worldwide. Statistically valid quantification of the biota and habitat condition in water bodies are prerequisites for rigorous assessment of aquatic biodiversity and habitat. We assessed the ecological condition of streams in a southeastern Brazilian basin. We quantified the percentage of stream length in good, fair, and poor ecological condition according to benthic macroinvertebrate assemblage. We assessed the risk of finding degraded ecological condition associated with degraded aquatic riparian physical habitat condition, watershed condition, and water quality. We describe field sampling and implementation issues encountered in our survey and discuss design options to remedy them. Survey sample sites were selected using a spatially balanced, stratified random design, which enabled us to put confidence bounds on the ecological condition estimates derived from the stream survey. The benthic condition index indicated that 62 % of stream length in the basin was in poor ecological condition, and 13 % of stream length was in fair condition. The risk of finding degraded biological condition when the riparian vegetation and forests in upstream catchments were degraded was 2.5 and 4 times higher, compared to streams rated as good for the same stressors. We demonstrated that the GRTS statistical sampling method can be used routinely in Brazilian rain forests and other South American regions with similar conditions. This survey establishes an initial baseline for monitoring the condition and trends of streams in the region.  相似文献   

4.
The Wisconsin Department of Natural Resources (WDNR), with support from the U.S. EPA, conducted an assessment of wadeable streams in the Driftless Area ecoregion in western Wisconsin using a probabilistic sampling design. This ecoregion encompasses 20% of Wisconsin’s land area and contains 8,800 miles of perennial streams. Randomly-selected stream sites (n = 60) equally distributed among stream orders 1–4 were sampled. Watershed land use, riparian and in-stream habitat, water chemistry, macroinvertebrate, and fish assemblage data were collected at each true random site and an associated “modified-random” site on each stream that was accessed via a road crossing nearest to the true random site. Targeted least-disturbed reference sites (n = 22) were also sampled to develop reference conditions for various physical, chemical, and biological measures. Cumulative distribution function plots of various measures collected at the true random sites evaluated with reference condition thresholds, indicate that high proportions of the random sites (and by inference the entire Driftless Area wadeable stream population) show some level of degradation. Study results show no statistically significant differences between the true random and modified-random sample sites for any of the nine physical habitat, 11 water chemistry, seven macroinvertebrate, or eight fish metrics analyzed. In Wisconsin’s Driftless Area, 79% of wadeable stream lengths were accessible via road crossings. While further evaluation of the statistical rigor of using a modified-random sampling design is warranted, sampling randomly-selected stream sites accessed via the nearest road crossing may provide a more economical way to apply probabilistic sampling in stream monitoring programs.  相似文献   

5.
Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79–0.91) and CR-24 (r 2 = 0.76–0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP.  相似文献   

6.
The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation’s waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.  相似文献   

7.
Despite the fact that the establishment and maintenance of blue gum plantations can potentially result in the removal of riparian vegetation, the presence of increased levels of sediments, pesticides, and nutrients, and consequently, the loss of in-stream biodiversity, few studies exist that have looked at the impacts of timber plantations on in-stream biota. The goals of this study were thus to determine water quality, riparian condition, and in-stream biodiversity values of local streams draining blue gum plantations in the Marbellup Brook catchment in Western Australia and to compare these values with those of streams associated with other land uses. Selected water quality and habitat variables and in-stream macroinvertebrate biodiversity were measured in 2006 and 2007 at 28 sites falling into five broad categories based on the predominant land use within 200 m of each study reach. Overall, the results indicated that ??blue gum plantation?? sites often had better water quality, riparian condition, and biodiversity values than ??pasture unfenced,?? and sometimes ??pasture fenced?? sites, but water quality and biodiversity values at these sites were not as good as those associated with ??remnant?? native vegetation sites. The location of the blue gum plantation sites along the disturbance gradient investigated was attributed to both present management and past land uses in the subcatchments investigated. As this study was conducted at a time when blue gum plantations were in an on-growing phase, it was recommended that future research on the impact of blue gum plantations on waterways in southwestern Australia should include an investigation of the impacts of timber clear-cutting and extraction. Longer-term cumulative and downstream effects of blue gum plantations on local waterways also need to be investigated.  相似文献   

8.
The Maryland Department of Natural Resources is conducting the Maryland Biological Stream Survey, a probability-based sampling program, stratified by river basin and stream order, to assess water quality, physical habitat, and biological conditions in first through third order, non-tidal streams. These streams comprise about 90% of all lotic water miles in the state. About 300 sites (75 m segments) are being sampled during spring and summer each year. All basins in the state will be sampled over a three-year period, 1995-97. MBSS developments in 1995-96 included (1) an electrofishing capture efficiency correction method to improve the accuracy of fish population estimates, (2) two indices of biotic integrity (IBI) for fish assemblages to identify degraded streams, and (3) land use information for catchments upstream of sampled sites to investigate associations between stream condition and anthropogenic stresses. Based on fish IBI scores at 270 stream sites in six basins sampled in 1995, 11% of non-tidal stream miles in Maryland were classified as very poor, 15% as poor, 24% as fair, and 27% as good. IBIs have not yet been developed for stream sites with catchment areas less than 120 hectares (23% of non-tidal stream miles). IBI scores declined with stream acid neutralizing capacity (ANC) and pH, an association that was also evident for fish species richness, biomass, and density. Low IBI scores were associated with several measures of degraded stream habitat, but not with local riparian buffer width. There was a significant negative association between IBI scores and urban land use upstream of sampled sites in the only extensively urbanized basin assessed in 1995. Future plans for the MBSS include (1) identifying all benthic macroinvertebrate samples to genus, (2) developing benthic macroinvertebrate, herpetofaunal, and physical habitat indicators, and (3) enhancing the analysis of stream condition-stressor associations by refining landscape metrics and using multi-variate techniques.  相似文献   

9.
Fifteen years ago, the first mapping guidelines for the recording and evaluation of river physical habitat quality in Germany, closely following the Länder Arbeitsgemeinschaft Wasser (LAWA) field survey, have been published. In light of this experience, a revised version has now been developed for North Rhine-Westphalia (West Germany). For the assessment, the streams are divided into segments serving as survey units. The survey is performed primarily in the field from the mouth to the source by an on-site recording of data. Defined reference conditions of the relevant morphological stream types serve as basis of the evaluation. Two evaluation procedures are carried out independently to validate the quality of the data. The proven basic concept operates as follows: the local scale habitat variables are grouped into 31 single parameters, which are then aggregated into six main parameters. These can further be aggregated into three zones: streambed, banks and adjacent land. The main modifications of the presented version are the following: (1) a larger differentiation of morphological stream types and (2) a higher level of detail concerning the mapping of relevant habitat characteristics. The last point allows additional evaluation options related to the morphological needs of the instream biota and a differentiated survey of anthropogenic degradation. Despite all modifications, the comparability with previous surveys has been largely maintained. By qualitative comparison of this method with other European mapping guidelines, different concepts of hydromorphological mapping are finally discussed.  相似文献   

10.
Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1–81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.  相似文献   

11.
Riparian buffer restorations are used as management tools to produce favorable water quality impacts, moreover among the many benefits riparian buffers may provide, their application as instruments for water quality restoration rests on a relatively firm foundation of research. However, the extent to which buffers can restore riparian ecosystems; their functionality and species composition, are essentially unknown. In light of the foregoing, two broad areas of research are indicated. First, data are needed to document the relative effectiveness of riparian buffers that differ according to width, length, and plant species composition. These questions, of managing buffer dimension and species composition for functionality, are of central importance even when attenuation of nutrient and sediment loads alone are considered. Second, where ecosystem restoration is the goal, effects to in-stream and terrestrial riparian biota need to be considered. Relatedly, the effects of the restoration on the landscape need to be considered. Particularly, at what rate do the effects of the riparian buffer on in-stream water quality, biota, and habitat diminish downstream from restored sites? Answers to these important questions are needed, for streams and watersheds of different size and for areas of differing soil type within watersheds. U.S. EPA-NRMRL has initiated as research project that will document the potential for buffers to restore riparian ecosystems; focusing on water quality effects, but also, importantly, documenting effects on biota. While substantial riparian buffer management initiatives are already underway, the extent of landscapes that influence riparian ecosystems in the eastern United States is large; leaving ample opportunity for this suggested research to provide improved buffer designs in the future. The ultimate goal of research projects developed under this paradigm of ecosystem restoration is to develop data that are needed to implement riparian buffer restorations in the mid-Atlantic and elsewhere, especially the eastern United States.  相似文献   

12.
Managers of aquatic resources benefit from indices of habitat quality that are reproducible and easy to measure, demonstrate a link between habitat quality and biota health, and differ between human-impacted (i.e., managed) and reference (i.e., nonimpacted or minimally impacted) conditions. The instability index (ISI) is an easily measured index that describes the instability of a streambed by relating the tractive force of a stream at bankfull discharge to the median substrate size. Previous studies have linked ISI to biological condition but have been limited to comparisons of sites within a single stream or among a small number of streams. We tested ISI as an indicator of human impact to habitat and biota in mountain streams of the northwestern USA. Among 1428 sites in six northwestern states, ISI was correlated with other habitat measures (e.g., residual pool depth, percent fine sediment) and indices of biotic health (e.g., number of intolerant macroinvertebrate taxa, fine sediment biotic index) and differed between managed and reference sites across a range of stream types and ecoregions. While ISI could be useful in mountain streams throughout the world, this index may be of particular interest to aquatic resource managers in the northwestern USA where a large dataset, from which ISI can be calculated, exists.  相似文献   

13.
Pipeline crossing construction alters river and stream channels, hence may have detrimental effects on aquatic ecosystems. This review examines the effects of crossing construction on fish and fish habitat in rivers and streams, and recommends an approach to monitoring and assessment of impacts associated with these activities. Pipeline crossing construction is shown to not only compromise the integrity of the physical and chemical nature of fish habitat, but also to affect biological habitat (e.g., benthic invertebrates and invertebrate drift), and fish behavior and physiology. Indicators of effect include: water quality (total suspended solids TSS), physical habitat (substrate particle size, channel morphology), benthic invertebrate community structure and drift (abundance, species composition, diversity, standing crop), and fish behavior and physiology (hierarchy, feeding, respiration rate, loss of equilibrium, blood hematocrit and leukocrit levels, heart rate and stroke volume). The Before-After-Control-Impact (BACI) approach, which is often applied in Environmental Effects Monitoring (EEM), is recommended as a basis for impact assessment, as is consideration of site-specific sensitivities, assessment of significance, and cumulative effects.  相似文献   

14.
Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.  相似文献   

15.
The assessment of lotic ecosystem quality plays an essential role to help determine the extent of environmental stress and the effectiveness of restoration activities. Methods that incorporate biological properties are considered ideal because they provide direct assessment of the end goal of a vigorous biological community. Our primary objective was to use biofilm lipids to develop an accurate biomonitoring tool that requires little expertise and time to facilitate assessment. A model was created of fatty acid biomarkers most associated with predetermined stream quality classification, exceptional warm water habitat (EWH), warm water habitat (WWH), and limited resource (LR-AMD), and validated along a gradient of known stream qualities. The fatty acid fingerprint of the biofilm community was statistically different (P?=?0.03) and was generally unique to recognized stream quality. One striking difference was essential fatty acids (DHA, EPA, and ARA) were absent from LR-AMD and only recovered from WWH and EWH, 45 % more in EWH than WWH. Independently testing the model along a stream quality gradient, this model correctly categorized six of the seven sites, with no match due to low sample biomass. These results provide compelling evidence that biofilm fatty acid analysis can be a sensitive, accurate, and cost-effective biomonitoring tool. We conceive of future studies expanding this research to more in-depth studies of remediation efforts, determining the applicable geographic area for the method and the addition of multiple stressors with the possibility of distinguishing among stressors.  相似文献   

16.
Prioritizing total maximum daily load (TMDL) development starts by considering the scope and severity of water pollution and risks to public health and aquatic life. Methodology using quantitative assessments of in-stream water quality is appropriate and effective for point source (PS) dominated discharge, but less so in watersheds with mostly nonpoint source (NPS) related impairments. For NPSs, prioritization in TMDL development and implementation of associated best management practices should focus on restoration of ecosystem physical functions, including how restoration effectiveness depends on design, maintenance and placement within the watershed. To refine the approach to TMDL development, regulators and stakeholders must first ask if the watershed, or ecosystem, is at risk of losing riparian or other ecologically based physical attributes and processes. If so, the next step is an assessment of the spatial arrangement of functionality with a focus on the at-risk areas that could be lost, or could, with some help, regain functions. Evaluating stream and wetland riparian function has advantages over the traditional means of water quality and biological assessments for NPS TMDL development. Understanding how an ecosystem functions enables stakeholders and regulators to determine the severity of problem(s), identify source(s) of impairment, and predict and avoid a decline in water quality. The Upper Reese River, Nevada, provides an example of water quality impairment caused by NPS pollution. In this river basin, stream and wetland riparian proper functioning condition (PFC) protocol, water quality data, and remote sensing imagery were used to identify sediment sources, transport, distribution, and its impact on water quality and aquatic resources. This study found that assessments of ecological function could be used to generate leading (early) indicators of water quality degradation for targeting pollution control measures, while traditional in-stream water quality monitoring lagged in response to the deterioration in ecological functions.  相似文献   

17.
Streams of the Pampasic plain in Southeastern South America are ecosystems affected by both water pollution and habitat alteration mainly due to agricultural activity. Water quality is influenced by the quality of habitats and both depend on land use and watershed morphology. The objective of this study was to determine the relationship between the variables of four factors: (1) the morphology of the watershed, (2) land use in the watershed, (3) river habitat, and (4) water quality of wadeable streams in Uruguay, as well as to determine the most representative variables to quantify such factors. We studied 28 watersheds grouped into three ecoregions and four principal activities, which generated seven zones with three to five streams each. Correlations between the variables of each factor allowed reducing the total number of variables from 57 to 32 to perform principal component analyses (PCA) by factor, reducing the number of variables to 18 for a general PCA. The first component was associated with water quality and elevation. The second was associated with the stream and watershed size, the third with habitat quality, and the fourth to the use of neighboring soils and objects in the channel. Our results indicate that agricultural intensity and elevation are the main factors associated with the habitat and water quality of these lowland streams. These factors must be especially considered in the development of water quality monitoring programs.  相似文献   

18.
Identification of reference streams and human disturbance gradients are crucial steps in assessing the effects of human disturbances on stream health. We describe a process for identifying reference stream reaches and assessing disturbance gradients using readily available, geo-referenced stream and human disturbance databases. We demonstrate the utility of this process by applying it to wadeable streams in Michigan, USA, and use it to identify which human disturbances have the greatest impact on streams. Approximately 38% of cold-water and 16% of warm-water streams in Michigan were identified as being in least-disturbed condition. Conversely, approximately 3% of cold-water and 4% of warm-water streams were moderately to severely disturbed by landscape human disturbances. Anthropogenic disturbances that had the greatest impact on moderately to severely disturbed streams were nutrient loading and percent urban land use within network watersheds. Our process for assessing stream health represents a significant advantage over other routinely used methods. It uses inter-confluence stream reaches as an assessment unit, permits the evaluation of stream health across large regions, and yields an overall disturbance index that is a weighted sum of multiple disturbance factors. The robustness of our approach is linked to the scale of disturbances that affect a stream; it will be less robust for identifying less degraded or reference streams with localized human disturbances. With improved availability of high-resolution disturbance datasets, this approach will provide a more complete picture of reference stream reaches and factors contributing to degradation of stream health.  相似文献   

19.
We tested a previously described model to assess the wildlife habitat value of New England salt marshes by comparing modeled habitat values and scores with bird abundance and species richness at sixteen salt marshes in Narragansett Bay, Rhode Island USA. As a group, wildlife habitat value assessment scores for the marshes ranged from 307-509, or 31-67% of the maximum attainable score. We recorded 6 species of wading birds (Ardeidae; herons, egrets, and bitterns) at the sites during biweekly survey. Species richness (r (2)=0.24, F=4.53, p=0.05) and abundance (r (2)=0.26, F=5.00, p=0.04) of wading birds significantly increased with increasing assessment score. We optimized our assessment model for wading birds by using Akaike information criteria (AIC) to compare a series of models comprised of specific components and categories of our model that best reflect their habitat use. The model incorporating pre-classification, wading bird habitat categories, and natural land surrounding the sites was substantially supported by AIC analysis as the best model. The abundance of wading birds significantly increased with increasing assessment scores generated with the optimized model (r (2)=0.48, F=12.5, p=0.003), demonstrating that optimizing models can be helpful in improving the accuracy of the assessment for a given species or species assemblage. In addition to validating the assessment model, our results show that in spite of their urban setting our study marshes provide substantial wildlife habitat value. This suggests that even small wetlands in highly urbanized coastal settings can provide important wildlife habitat value if key habitat attributes (e.g., natural buffers, habitat heterogeneity) are present.  相似文献   

20.
We used methods from EPA's Environmental Monitoring and Assessment Program (EMAP) to assess the regional status of streams within the Coast Range ecoregion of Washington State. Study objectives were: to determine the ecological condition of wadable, 1st-order through 3rd-order streams; to provide information for the development of water quality biological criteria; and to determine the applicability of EMAP-derived methods in Washington. Stream condition was assessed using EMAP indicators for habitat (chemical and physical) and biology (invertebrate and vertebrate assemblages). EMAP's probability survey was used to select 75 1st through 3rd-order stream sites from the USGS 1:100,000 series hydrographic layer. Of these, 45 sites were sampled. Multivariate techniques were used to identify community types and related physical and chemical habitat. Overall, about 25% of the sites were rated least-impacted. Most impacts were associated with non-point source pollution, mainly forestry practices. The R-EMAP method was a successful tool for assessment of regional status and ecological integrity; however, in order to use it for biological criteria development in Washington State, the method would require some modification to complement the current state protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号