首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prompt assessment and management actions are required if we are to reduce the current rapid loss of habitat and biodiversity worldwide. Statistically valid quantification of the biota and habitat condition in water bodies are prerequisites for rigorous assessment of aquatic biodiversity and habitat. We assessed the ecological condition of streams in a southeastern Brazilian basin. We quantified the percentage of stream length in good, fair, and poor ecological condition according to benthic macroinvertebrate assemblage. We assessed the risk of finding degraded ecological condition associated with degraded aquatic riparian physical habitat condition, watershed condition, and water quality. We describe field sampling and implementation issues encountered in our survey and discuss design options to remedy them. Survey sample sites were selected using a spatially balanced, stratified random design, which enabled us to put confidence bounds on the ecological condition estimates derived from the stream survey. The benthic condition index indicated that 62 % of stream length in the basin was in poor ecological condition, and 13 % of stream length was in fair condition. The risk of finding degraded biological condition when the riparian vegetation and forests in upstream catchments were degraded was 2.5 and 4 times higher, compared to streams rated as good for the same stressors. We demonstrated that the GRTS statistical sampling method can be used routinely in Brazilian rain forests and other South American regions with similar conditions. This survey establishes an initial baseline for monitoring the condition and trends of streams in the region.  相似文献   

2.
Evaluation of the ecological status of river sites in Canada is supported by building models using the reference condition approach. However, geography, data scarcity and inter-operability constraints have frustrated attempts to monitor national-scale status and trends. This issue is particularly true in Atlantic Canada, where no ecological assessment system is currently available. Here, we present a reference condition model based on the River Invertebrate Prediction and Classification System approach with regional-scale applicability. To achieve this, we used biological monitoring data collected from wadeable streams across Atlantic Canada together with freely available, nationally consistent geographic information system (GIS) environmental data layers. For the first time, we demonstrated that it is possible to use data generated from different studies, even when collected using different sampling methods, to generate a robust predictive model. This model was successfully generated and tested using GIS-based rather than local habitat variables and showed improved performance when compared to a null model. In addition, ecological quality ratio data derived from the model responded to observed stressors in a test dataset. Implications for future large-scale implementation of river biomonitoring using a standardised approach with global application are presented.  相似文献   

3.
Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79–0.91) and CR-24 (r 2 = 0.76–0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP.  相似文献   

4.
We used methods from EPA's Environmental Monitoring and Assessment Program (EMAP) to assess the regional status of streams within the Coast Range ecoregion of Washington State. Study objectives were: to determine the ecological condition of wadable, 1st-order through 3rd-order streams; to provide information for the development of water quality biological criteria; and to determine the applicability of EMAP-derived methods in Washington. Stream condition was assessed using EMAP indicators for habitat (chemical and physical) and biology (invertebrate and vertebrate assemblages). EMAP's probability survey was used to select 75 1st through 3rd-order stream sites from the USGS 1:100,000 series hydrographic layer. Of these, 45 sites were sampled. Multivariate techniques were used to identify community types and related physical and chemical habitat. Overall, about 25% of the sites were rated least-impacted. Most impacts were associated with non-point source pollution, mainly forestry practices. The R-EMAP method was a successful tool for assessment of regional status and ecological integrity; however, in order to use it for biological criteria development in Washington State, the method would require some modification to complement the current state protocols.  相似文献   

5.
中国流域水环境生物监测体系构成和发展   总被引:3,自引:3,他引:0       下载免费PDF全文
分析了国外水环境生物监测体系的构成和特点;总结了中国生物监测的发展历程、基础、存在问题和发展需求;提出了体系发展的总体发展目标,即以流域为单元,以各级支流为监测区段,发展以实现流域水环境生态完整性评价为目的的综合监测体系;同时,着重介绍了重点发展内容:建立以市级站为核心的监测网络;建立包含4个板块的核心业务监测能力;开展生物监测业务标准化建设;进一步完善水环境质量评价报告。对全国监测系统生物监测体系的构成和发展提出建议:在总体发展目标指导下,完成构建水环境生物监测技术体系、构建全国水环境生物监测网络体系、建立数据管理与评价平台及建立运行保障体系4个分目标,实现中国环境管理以"污染防治"为重点到以"生态健康"为目的的转折。  相似文献   

6.
Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 ?, macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.  相似文献   

7.
8.
Physical morphology is an important attribute of a stream system. The morphological state of a natural pristine stream often reflects its biological condition because of their close links. In contrast, the morphology of an urban stream may exhibit different behaviours due to serious human disturbances. For an urban stream system, the morphological condition not only determines the in-stream habitat quality but also provides the physical basis for the stream’s municipal functionalities. By comparing the morphological characters of urban and natural streams, this paper develops an integrated index system and model for the assessment of urban stream morphology. The model is applied to the Ancient Canal (Zhenjiang, China) with the aim of comparing the morphological conditions of reaches with and without ongoing restoration programs and further of assessing the effectiveness of the restoration methods and techniques. The results indicate that the water security and the landscape functionality of the canal have been upgraded. However, the quality of the in-stream habitat has been degraded as a result of the restoration. Based on the modelled results, recommendations are given for improving the effects of the next-phase restoration. The assessment system and findings from the application presented here are expected to have important implications for the restoration of disturbed urban streams in many other cities in China and elsewhere in the world.  相似文献   

9.
I developed a fish-based index of biotic integrity (IBI) to assess environmental quality in intermittent headwater streams in Wisconsin, USA. Backpack electrofishing and habitat surveys were conducted four times on 102 small (watershed area 1.7–41.5 km2), cool or warmwater (maximum daily mean water temperature ≥22 C), headwater streams in spring and late summer/fall 2000 and 2001. Despite seasonal and annual changes in stream flow and habitat volume, there were few significant temporal trends in fish attributes. Analysis of 36 least-impacted streams indicated that fish were too scarce to calculate an IBI at stations with watershed areas less than 4 km2 or at stations with watershed areas from 4–10 km2 if stream gradient exceeded 10 m/km (1% slope). For streams with sufficient fish, potential fish attributes (metrics) were not related to watershed size or gradient. Seven metrics distinguished among streams with low, agricultural, and urban human impacts: numbers of native, minnow (Cyprinidae), headwater-specialist, and intolerant (to environmental degradation) species; catches of all fish excluding species tolerant of environmental degradation and of brook stickleback (Culaea inconstans) per 100 m stream length; and percentage of total individuals with deformities, eroded fins, lesions, or tumors. These metrics were used in the final IBI, which ranged from 0 (worst) to 100 (best). The IBI accurately assessed the environmental quality of 16 randomly chosen streams not used in index development. Temporal variation in IBI scores in the absence of changes in environmental quality was not related to season, year, or type of human impact and was similar in magnitude to variation reported for other IBI's.  相似文献   

10.
Pipeline crossing construction alters river and stream channels, hence may have detrimental effects on aquatic ecosystems. This review examines the effects of crossing construction on fish and fish habitat in rivers and streams, and recommends an approach to monitoring and assessment of impacts associated with these activities. Pipeline crossing construction is shown to not only compromise the integrity of the physical and chemical nature of fish habitat, but also to affect biological habitat (e.g., benthic invertebrates and invertebrate drift), and fish behavior and physiology. Indicators of effect include: water quality (total suspended solids TSS), physical habitat (substrate particle size, channel morphology), benthic invertebrate community structure and drift (abundance, species composition, diversity, standing crop), and fish behavior and physiology (hierarchy, feeding, respiration rate, loss of equilibrium, blood hematocrit and leukocrit levels, heart rate and stroke volume). The Before-After-Control-Impact (BACI) approach, which is often applied in Environmental Effects Monitoring (EEM), is recommended as a basis for impact assessment, as is consideration of site-specific sensitivities, assessment of significance, and cumulative effects.  相似文献   

11.
The goal of biological monitoring programs is to determine impairment classification and identify local stressors. Biological monitoring performs well at detecting impairment but when used alone falls short of determining the cause of the impairment. Following detection a more thorough survey is often conducted using extensive biological, chemical, and physical analysis coupled with exhaustive statistical treatments. These methods can be prohibitive for small programs that are limited by time and budget. The objective of this study was to develop a simple and useful model to predict the probability of biological impairment based on routinely collected habitat assessments. Biological communities were assessed with the Index of Biotic Integrity (IBI), and habitat was assessed with the Qualitative Habitat Evaluation Index. Two models were constructed from a validation dataset. The first predicted a binary outcome of impaired (IBI < 35) or non-impaired (IBI ≥ 35) and the second predicted a categorical gradient of impairment. Categories include very poor, poor, fair, good, and excellent. The models were then validated with an independently collected dataset. Both models successfully predicted biological integrity of the validation dataset with an accuracy of 0.84 (binary) and 0.75 (categorical). Based on the binary outcome model, 22 sites were observed to be impaired while the model predicted them to not be impaired. The categorical model misclassified 47 samples while only seven of those were misclassified by two or more categories. The impairment source was subsequently identified by known stressors. The models developed here can be easily applied to other datasets from the Eastern Corn Belt Plain to aid in stressor identification by predicting the probability of observing an impaired fish community based on habitat. Predicted probabilities from the models can also be used to support conclusions that have already been determined.  相似文献   

12.
大型底栖动物是评价水生态质量最常用的生物类群,鉴于水生昆虫的生活史特点,在一年当中群落结构会发生季节性变化,如何利用底栖动物数据准确评价水生态质量状况,反映客观实际,值得探讨。将黑龙江省2012—2015年水生生物试点监测47个采样点的108组底栖动物数据进行比较,对群落结构的相似性、物种的更替率和BMWP指数评价结果进行分析,探讨群落的演替及BMWP指数的变化规律。结果表明不同时间采集的样品底栖动物群落之间存在较大差异,评价的结果也存在差异,越是水环境质量好的区域,这种差异越明显。利用底栖动物评价水生态状况,宜选择长时间段的多个采集数据,经统计整理后,利用复合样方(年均值)的特征,评价一段时间内(如以年为单位)的水生态质量状况,使评价结果更具准确性。  相似文献   

13.
The zebrafish (Danio rerio) is one of the most studied aquatic organisms for water biomonitoring, due to its sensitivity to environmental degradation and resistance to toxic substances. This study determined the presence of micronuclei and nuclear abnormalities in peripheral blood erythrocytes, and assessed the gene expression of caspase-3 (CASP-3) and metallothionein 1 (MT-1) in the gills and liver of D. rerio. The study fish (n = 45) were exposed to water collected from two stations with mining impact (E2 and E3) and a reference station without evident mining contamination (E1), all located in La Elvira stream (Manizales-Colombia). In addition, a positive control (PC) with HgCl2 (50 μg/L) and negative control (NC) with tap water were included. The fish from the PC and E2 and E3 treatments displayed genotoxic effects and changes in gene expression, with significant differences in micronuclei formation and the presence of blebbed nuclei. The cytochrome oxidase subunit I (COI) gene was used as reference and proved to be stable compared to the β-actin and 28S ribosomal RNA (28S) genes. In gills, CASP-3 expression was higher in the PC, and MT-1 expression was higher in the PC and E3 treatment. In liver, CASP-3 was expressed in the E2 treatment, and MT-1 expression was low. These results show that the genotoxic effects and differential gene expression observed in fish exposed to water from La Elvira stream could also be affecting the organisms present in this habitat.  相似文献   

14.
The spatial congruence of chemical and biological recovery along an 18-km acid mine impaired stream was examined to evaluate the efficacy of treatment with an alkaline doser. Two methods were used to evaluate biological recovery: the biological structure of the benthic macroinvertebrate community and several ecosystem processing measures (leaf litter breakdown, microbial respiration rates) along the gradient of improved water chemistry. We found that the doser successfully reduced the acidity and lowered dissolved metals (Al, Fe, and Mn), but downstream improvements were not linear. Water chemistry was more variable, and precipitated metals were elevated in a 3–5-km “mixing zone” immediately downstream of the doser, then stabilized into a “recovery zone” 10–18 km below the doser. Macroinvertebrate communities exhibited a longitudinal pattern of recovery, but it did not exactly match the water chemistry gradient Taxonomic richness (number of families) recovered about 6.5 km downstream of the doser, while total abundance and % EPT taxa recovery were incomplete except at the most downstream site, 18 km away. The functional measures of ecosystem processes (leaf litter breakdown, microbial respiration of conditioned leaves, and shredder biomass) closely matched the measures of community structure and also showed a more modest longitudinal trend of biological recovery than expected based on pH and alkalinity. The measures of microbial respiration had added diagnostic value and indicated that biological recovery downstream of the doser is limited by factors other than habitat and acidity/alkalinity, perhaps episodes of AMD and/or impaired energy/nutrient inputs. A better understanding of the factors that govern spatial and temporal variations in acid mine contaminants, especially episodic events, will improve our ability to predict biological recovery after remediation.  相似文献   

15.
In this report, predictions of the species that were expected to occur at stream sites were generated and probable stressors to fish species that were predicted to occur but were absent were diagnosed. Predictions were generated based on the hierarchical screening method of Smith and Powell (1971, Am. Mus. Novit. 2458, 1–30), using fish abundance in conjunction with 25 environmental variables at 895 sites. The sites were sampled throughout Maryland and represent the entire range of environmental quality from severely degraded to minimally degraded. Stressor variable values that exceeded tolerance thresholds for species that were expected to occur, but were absent, were considered to be probable stressors. This method was tested for efficacy in stream site assessments and stressor diagnosis using an independent data set. Sites that were classified as degraded according to the IBI and to non-biological criteria had fewer predicted species present compared to minimally influenced sites, indicating that the proportion of predicted species present accurately represents the biological integrity of a stream site. The nine stressors that were applied to the test data set accounted for species absences in 43.7% of degraded sites. Impervious land cover was the most common stressor identified. In addition to assessing stream biological integrity and identifying stressors to fish species, this approach also provides tolerance thresholds for predicted fish species that are useful endpoints necessary to plan effective restoration of fish species in Maryland.  相似文献   

16.
Watershed land use in suburban areas can affect stream biota through degradation of instream habitat, water quality, and riparian vegetation. By monitoring stream biotic communities in various geographic regions, we can better understand and conserve our watershed ecosystems. The objective of this study was to examine the relationship between watershed land use and the integrity of benthic invertebrate communities in eight streams that were assessed over a 3-year period (2001-2003). Sites were selected from coastal Rhode Island watersheds along a residential land-use gradient (4-59%). Using the rapid bioassessment protocol, we collected biological, physicochemical, habitat, and nutrient data from wadeable stream reaches and compared metrics of structure and integrity. Principal component analyses showed significant negative correlation of indicators for stream physicochemical, habitat, and instream biodiversity with increasing residential land use (RLU) in the watershed. The physicochemical variables that were most responsive to percent RLU were conductivity, instream habitat, nitrate, and dissolved inorganic nitrogen (DIN). The positive correlation of DIN with percent RLU indicated an anthropogenic source of pollution affecting the streams. The biotic composition of the streams shifted from sensitive to insensitive taxa as percent RLU increased; the most responsive biological variables were percent Ephemeroptera, percent Scrapers, percent Insects, and the Hilsenhoff biotic index. These data show the importance of land management and conservation at the watershed scale to sustaining the biotic integrity of coastal stream ecosystems.  相似文献   

17.
The assessment of the microbial diversity of the entire community of a given habitat requires the extraction of the total environmental DNA. Metagenomic investigations of a petroleum-polluted habitat have its unique challenges. The specific methods were developed for the extraction of high-quality metagenome in good quantity from the petroleum-polluted saline and non-saline sites in Gujarat (India). The soil samples were washed to remove the toxic, hazardous organic pollutants which might interfere with the recovery of the metagenomic DNA. The metagenomic DNA extraction results were encouraging with the mechanical bead beating, soft lysis, and combination of both. The extracted DNA was assessed for its purity and yield followed by its application in the amplification of the 16S rRNA region. The amplicons were used for judging the molecular diversity by the denaturing gradient gel electrophoresis (DGGE). The microbial diversity was also analyzed statistically by calculating various diversity indices and principal component analysis (PCA). The results on the metagenomic diversity of the bacterial population among the three cohorts based on the culture-independent technique exhibited significant difference among the PAH sites and Okha–Madhi and Porbandar Madhavpur habitats.  相似文献   

18.
The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation’s waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.  相似文献   

19.
Despite the value of aquatic insects in aquatic ecosystem biomonitoring, few studies within North America have addressed relationships between aquatic insect assemblages and landscape-level environmental variables. In this study, over 300,000 adult caddisfly specimens representing 224 species were collected and analyzed from samples of 225 Minnesota aquatic habitats within 58 watersheds. Detrended Correspondence Analysis and a UPGMA dendrogram of caddisfly relative abundance data determined that five regions of caddisfly biodiversity exist within the state. Species richness and diversity were significantly highest in the Lake Superior and Northern regions, lowest in the Northwestern and Southern regions, and intermediate in the Southeastern region. Canonical Correspondence Analysis determined that caddisfly species composition was related to temperature, percentage of disturbed habitat, and stream gradient. Although a strong correlation between temperature and percentage of disturbed habitat made determination of the relative importance of those variables difficult, it is likely that anthropogenic disturbance has decreased caddisfly biodiversity in at least the Northwestern and Southern regions. Now that regions of biodiversity have been established, future changes to the fauna can be evaluated with greater precision and confidence. This study represents the most comprehensive faunal analysis of an aquatic insect order within the Western Hemisphere.  相似文献   

20.
Considering the importance of benthic macroinvertebrates for diagnosis of variations in the ecological conditions of aquatic habitats, the aim of this study was to investigate the structure of the Chironomidae and Oligochaeta assemblages along an organic pollution gradient. The fauna specimens were obtained with the use of artificial substrates, and the environmental variables were recorded at five sites of the São Lourenço River, during 12 months. Metrics of the assemblage and detrended correspondence analysis were used to verify the response of the fauna to the pollution gradient. Procrustes analysis was used to verify whether the data on the Chironomidae and Oligochaeta assemblages, as well as the taxonomic and numerical resolution of these groups, provide similar results in relation to the pollution gradient. The richness, evenness, and taxonomic composition of the Chironomidae and Oligochaeta assemblages varied significantly among the collection sites, with distinct conservation conditions. Genera of the subfamilies Orthocladiinae and Tanypodinae were associated with the sites upstream of the urban area, where the dissolved oxygen levels are higher. Species of Oligochaeta and the genus Chironomus were associated with more organically polluted sites. No concordance was observed in the response of the Chironomidae and Oligochaeta assemblages in relation to the environmental variables, indicating the need to use both groups in biomonitoring studies. On the other hand, both the data on composition (presence or absence) and those on the lowest taxonomic resolution (abundance of subfamilies) were effective to diagnose the pollution gradient in the river studied. Therefore, when the environmental conditions along a river’s gradient are contrasting, we suggest the use of the lowest taxonomic resolution of Chironomidae and Oligochaeta in biomonitoring. That procedure considerably reduces the assessment time, besides being a method that can be used by people not specializing in the taxonomy of groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号