首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Field experiments were conducted in open top chamber during rabi seasons of 2009–10 and 2010–11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80–85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5–10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF?+?CO2, NF air and 550?±?50 ppm CO2), elevated ozone (EO, NF air and 25–35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO?+?CO2, NF air, 25–35 ppb O3 and 550?±?50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18–20 %. Elevated CO2 (500?±?50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.  相似文献   

2.
The present study showed a possibility to use phenotypic and proteomic responses in rice plants as an in vivo biomarker to detect higher concentrations of ambient ozone (O3). The investigation was done on two cultivars of Indian rice using open top chambers ventilated with charcoal filtered air, ambient air, ambient air with 10 ppb O3 exposure and ambient air with 20 ppb O3 exposure at a rural site of Varanasi, India. Results showed that the magnitude of O3 induced specific type of foliar injury directly depends on the duration and concentration of O3 exposure. Even the internal protein profile of injured and normal leaf demonstrated a differential expression, which directly indicates towards the molecular basis of plant’s response against O3.  相似文献   

3.
We developed small and mobile open top chambers (mini-OTC) measuring 0.6 m (W)?×?0.6 m (D)?×?1.2 m (H) with an air duct of 0.6 m (W)?×?0.23 m (D)?×?1.2 m (H). The air duct can be filled with activated charcoal to blow charcoal filtered air (CF) into the chamber, as opposed to non-filtered ambient air (NF). Ozone sensitive radish Raphanus sativus cv. Red Chime and rosette pakchoi Brassica campestris var. rosularis cv. ATU171 were exposed to NF and CF in mini-OTCs at different locations in East Asia. A total of 29 exposure experiments were conducted at nine locations, Shanghai, China, Ha Noi, Vietnam, Lampang, Phitsanulok and Pathumtani, Thailand, and Hiratsuka, Kisai, Abiko and Akagi, Japan. Although no significant relationships between the mean concentrations of ambient O3 during the experimental period and the growth responses were observed for either species, multiple linear regression analysis suggested a good relationship between the biomass responses in each species and the O3 concentration, temperature, and relative humidity. The cumulative daily mean O3 (ppb/day) could be indirectly predicted by NF/CF based on the dry weight ratio of biomass, mean air temperature, and relative air humidity.  相似文献   

4.
This study was conducted in the urban environment of Varanasi, India, to evaluate the plant responses to urban air pollution. Twenty sites were selected in four different zones of the city. At each site, seven woody perennials of same age classes were selected. Out of the four zones (I, II, III and IV), zone IV was used as a reference (control) zone as it received the minimum pollution input. Plant species growing in polluted and control areas were compared with respect to foliar dust load, per cent leaf area injury, leaf area, specific leaf weight and chlorophyll, ascorbic acid, SO 4 2– S and total N concentration in the leaves. Results indicated that the air pollution level in Varanasi causes leaf damage, reduces leaf area, specific leaf weight and chlorophyll, ascorbic acid and total N concentrations in the leaves. Sulphur concentration in leaves increased with increasing level of SO2 in the ambient air. The magnitude of such changes was maximum at the zone receiving maximum pollution load. Carissa carandas was found to be the most sensitive species and Bougainvillea spectabilis, the least. The study shows that the urban air pollution level in Varanasi is detrimental for the growth of plants involved in this study.  相似文献   

5.
This work presents the vertical distributions of ozone and meteorological parameters observed with tethered ozonesondes and meteorological radiosondes in the lower atmosphere during an ozone episode on March 25–27, 2003, in Kaohsiung City in southern Taiwan. Kaohsiung is a coastal industrial city with inland mountain ranges to the east. Extremely complicated ozone structures were identified that spanned day and night during the experimental period. During afternoons, the lower atmosphere was divided into two stratified air layers with substantially different ozone concentrations. On the episode day (March 26), average ozone concentration in the near-ground layer was 85 ppb and the aloft layer was 140 ppb. A very high ozone peak of 199 ppb measured aloft likely resulted from an elevated large point source. Several no-ozone air layers, distributed throughout 400–750 m, were observed to transport onshore during the nigh. As well, elevated ozone layers peaking at 60–90 ppb and 90–160 ppb were detected below and above the no-ozone air layers, respectively. These complicated ozone structures were likely formed through titration of plumes from large point sources and the circulations of sea breezes or combined sea-breeze/mountain flows in the study area.  相似文献   

6.
The evaluation of certain vascular plants that grow in the city of Madrid as biomonitors of SO2 air pollution in urban environments has been carried out. Total concentration of sulphur in leaves of the chosen higher plants as well as other parameters in close relation to this contaminant (visible injury symptoms, chlorophyll a- and b-content and peroxidase activity) have been determined in order to study the spatial distribution and temporal changes in SO2 deposition. Results obtained show that coniferous species such as Pinus pinea, were more sensitive to SO2 atmospheric concentration than leafy species as Quercux ilex subspecies ballota and, in the same way, bush species, such asPyracantha coccinea and Nerium oleander, were more sensitive than wooded species, such as Cedrus deodaraandPinus pinea, respectively. There is a higher accumulation of sulphur in vegetable species located near highways and dense traffic incidence roads and near areas with high density of population. The minimum values for accumulation of SO2 were registered in winter and spring seasons (from January to April) due to the vegetative stop; while maximum values are obtained during the summer season (from June to September), due to the stoma opening. The highest increments in sulphur concentration, calculated as the difference between two consecutive months, are obtained in May and June for all considered species except forCedrus deodara and Pyracantha coccinea, both species have few seasonal changes during the whole year. Some species are more sensitive to natural washing than others, showing a decrease in sulphur concentration after rainfall periods.  相似文献   

7.
Nitrogen Dioxide (NO2) is a common urban air pollutant that results from the combustion of fossil fuels. It causes serious human health effects, is a precursor to the formation of ground level ozone, another serious air pollutant, and is one of the six criteria air pollutants established by the United States (U.S.) Clean Air Act (CAA). Ogawa Passive Sampling Devices (PSDs) for NO2 were collocated and operated at six NO2 Federal Reference Method (FRM) monitor locations in the El Paso, Texas area for the 2004 calendar year. Passive samples were taken at 2-week, 3-week, and 4-week intervals and compared against the continuously operating FRM monitors. Results showed that the collective NO2 annual arithmetic mean for all passive monitors was identical to the NO2 mean for all FRM monitors. Of the individual locations, three passive annual NO2 means were identical to their corresponding FRM means, and three passive annual NO2 means differed from their corresponding FRM means by only one part per billion (ppb). Linear correlation analysis between all readings of the individual NO2 PSDs and FRM values showed an average absolute difference of 1.2 ppb with an r 2 of 0.95. Paired comparison between high and low concentration annual NO2 sites, seasonal considerations, and interlab quality control comparisons all showed excellent results. The ease of deployment, reliability, and the cost-savings that can be realized with NO2 PSDs could make them an attractive alternative to FRM monitors for screening purposes, and even possibly an equivalent method for annual NO2 monitoring. More tests of the Ogawa NO2 PSD are recommended for different ecosystem and climate regimes.  相似文献   

8.
An atmospheric pollution survey was carried out at 13 sites in Karachi, Pakistan, simultaneously from 0600 h to 2100 h for 15 consecutive days in May 1990 which also included meteorological measurements. The monitoring sites were included along the prevailing wind patterns in Karachi. Carbon monoxide levels in the ambient air were found to reach 9–10 ppm along the busy urban streets whereas CO2 level exceeded 370 ppm in these areas. Our survey indicates that NO2 levels were exceeding U.S. ambient air quality standards. Maxmum NO2 concentrations were observed (0.3–0.5 ppm) during the daytime from 0600 h to 2100 h. The surface ozone maximum around noon at the inland sites reached the levels of 40 ppb and 50 ppb respectively compared to upwind coastal Sites 1 level of 25 ppb. The Pb concentrations were approximately 3- to 7-fold higher than average, which corresponded well to urban air. Fossil fuel SO4 (excess) and NO3 were apportionally based on the assumption that these two anions were present as (NH4)2SO4, and NH4NO3 in the aerosols. In the eastern part of the city atmospheric sulphate (SO4) shows the combustion of coal as its source from the vicinity and downwind of a steel manufacturing plant.  相似文献   

9.
Combinations of pollutants including acidic fog and ozone occur at high levels at a number of sites in eastern North America and Europe. Mountainous regions such as the Laurentians (Quebec), Appalachians (N.Y.) and the Green Mountains (Vermont) are especially vulnerable, with both conifers and hardwoods being affected. Ongoing measurements of atmospheric chemistry (e.g. The Chemistry of High Elevation Fog-CHEF project of the Canadian Atmospheric Environment Service) reveal that extreme cloudwater events of less than pH 3.0 and ozone episodes in excess of 100 ppb are common occurrences. The purpose of this study was to gather information about the response of epiphytic lichens to deteriorating air quality at selected locations for which atmospheric chemical data are readily available. A multidisciplinary approach is being used to analyse the lichens.Morphological and cellular aberrations previously documented by the authors to occur in terricolous lichens exposed to simulated acidic rain events will be evaluated for their usefulness are early warning indicators of forest decline. In addition, tissue chemistry of species such as Hypogymnia physodes will be correlated with parameters such as altitude and decline index and compared with published elemental values for lichens from similarly polluted sites in Europe and Scandinavia.  相似文献   

10.
Carbaryl insecticide was applied by ground spray to plants in urban areas to control a serious insect pest the glassy-winged sharpshooter, Homalodisca coagulata (Say), newly introduced inCalifornia. To assure there are no adverse impacts to human health and the environment from the carbaryl applications, carbaryl was monitored in tank mixtures, air, surface water, foliage and backyard fruits and vegetables.Results from the five urban areas – Porterville, Fresno, Rancho Cordova, Brentwood and Chico – showed there were no significanthuman exposures or impacts on the environment. Spray tank concentrations ranged from 0.1–0.32%. Carbaryl concentrationsin air ranged from none detected to 1.12 g m-3, well below the interim health screening level in air of 51.7 g m-3. There were three detections of carbaryl in surface water nearapplication sites: 0.125 ppb (parts per billion) from a water treatment basin; 6.94 ppb from a gold fish pond; and 1737 ppbin a rain runoff sample collected from a drain adjacent to a sprayed site. The foliar dislodgeable residues ranged from 1.54–7.12 g cm-2, comparable to levels reported forsafe reentry of 2.4 to 5.6 g cm-2 for citrus. Carbarylconcentrations in fruits and vegetables ranged from no detectableamounts to 7.56 ppm, which were below the U.S.EPA tolerance, allowable residue of 10 ppm.  相似文献   

11.
A serious forest decline of Betula ermanii Cham. has been observed at Mt. Mae-Shirane, Oku-Nikko, Japan, where high ozone (O3) concentration and severe water deficiency have been measured. In order to consider the possibility whether O3 and/or water stresses could have been the causes of the forest decline of B. ermanii, plant growth experiments were conducted in environment-controlled growth cabinets. Two-year-old seedlings of B. ermanii were exposed to either charcoal-filtered air (O3 concentration <5 ppb) or 50 ppb O3 (daily average, ranging between 20–100 ppb) for 123 days at 20.0/12.5 ± 1.0°C (day/night) and 70/80 ± 7% relative humidity (day/night). Simultaneously, seedlings were treated with three watering regime: 1.0 < pF < 1.8 (no water stress), 1.8 < pF < 2.5 (mild water stress) or 2.5 < pF < 3.0 (severe water stress). O3 exposure significantly reduced the dry weights of leaf, root and the whole plant, while water stress significantly reduced the dry weights of each organ and the whole plant. Significant reductions of net photosynthesis, transpiration and stomatal conductance were also observed under O3 and/or water deficiency treatments, while contents of RuBP carboxylase/oxygenase (Rubisco), chlorophyll a+b and some essential nutrient elements (N, P, K, Mg and Ca) were not markedly changed. It was suggested that the decrease in net photosynthetic rate induced mainly by stomatal closure was the major cause of the growth reduction under O3 and/or water stresses. No significant interactions between O3 and water stresses were observed in terms of the depression of dry matter production, which suggested that simultaneous stress treatments of O3 exposure and water deficiency could affect the tree growth of B. ermanii additively.  相似文献   

12.
The present study describes an operational method, based on the Katerji et al. (Eur J Agron 33:218-230, 2010) model, for determining the daily evapotranspiration (ET) for soybean inside open top chambers (OTCs). It includes two functions, calculated day par day, making it possible to separately take into account the effects of concentrations of air ozone and plant water stress. This last function was calibrated in function of the daily values of actual water reserve in the soil. The input variables of the method are (a) the diurnal values of global radiation and temperature, usually measured routinely in a standard weather station; (b) the daily values of the AOT40 index accumulated (accumulated ozone over a threshold of 40 ppb during daylight hours, when global radiation exceeds 50 Wm(-2)) determined inside the OTC; and (c) the actual water reserve in the soil, at the beginning of the trial. The ensemble of these input variables can be automatable; thus, the proposed method could be applied in routine. The ability of the method to take into account contrasting conditions of ozone air concentration and water stress was evaluated over three successive years, for 513 days, in ten crop growth cycles, excluding the days employed to calibrate the method. Tests were carried out in several chambers for each year and take into account the intra- and inter-year variability of ET measured inside the OTCs. On the daily scale, the slope of the linear regression between the ET measured by the soil water balance and that calculated by the proposed method, under different water conditions, are 0.98 and 1.05 for the filtered and unfiltered (or enriched) OTCs with root mean square error (RMSE) equal to 0.77 and 1.07 mm, respectively. On the seasonal scale, the mean difference between measured and calculated ET is equal to +5% and +11% for the filtered and unfiltered OTCs, respectively. The ability of the proposed method to estimate the daily and seasonal ET inside the OTCs is therefore satisfactory following inter- and intra-annual tests. Finally, suggestions about the applications of the proposed method for other species, different from soybean, were also discussed.  相似文献   

13.
The present study was conducted to determine the heavy metal contamination in soil with accumulation in edible parts of plants and their subsequent changes in biochemical constituents due to wastewater irrigation. Though the wastewater contains low levels of the heavy metals (Fe, Mn, Pb, Cd, and Cr), the soil and plant samples show higher values due to accumulation. The trend of metal accumulation in wastewater-irrigated soil is in the order: Fe > Pb > Mn > Cr > Cd. Of the three species Colocasia esculentum, Brassica nigra, and Raphanus sativus that are grown, the order of total heavy metal accumulation in roots is Raphanus sativus > Colocasia esculentum, while in shoots the order is Brassica nigra > Colocasia esculentumRaphanus sativus. The enrichment factor (EF) of the heavy metals in contaminated soil is in the sequence of Cd (3) > Mn (2.7) > Cr (1.62) > Pb (1.46) > Fe (1.44), while in plants EF varies depending upon the species and plant part. C. esculentum and R. sativus show a higher EF for Cr and Cd. All plants show a high transfer factor (TF > 1) for Cd signifying a high mobility of Cd from soil to plant whereas the TF values for Pb are very low as it is not bioavailable. Results of the biochemical parameters show decrease in total chlorophyll and total amino acid levels in plants and an increase in amounts of soluble sugars, total protein, ascorbic acid, and phenol except B. nigra for protein in plants grown in soil irrigated with wastewater as compared to control site.  相似文献   

14.
Needles of three pine species (Pinus halepensis, Pinus pinea and Pinus nigra) were analysed to assess the occurrence of polycyclic aromatic hydrocarbons (PAHs) in 34 sites located throughout the Ebro River, in Northeast Spain. Overall, the concentration varied between 55 and 808 ng g − 1 (dry weight). The three- and four-ring PAHs were the most representative, with phenanthrene having 43% of the total PAH load and naphthalene showing a high incidence in rural areas. Despite matrix apparent similarities, P. halepensis needles revealed higher entrapment levels than P. nigra and P. pinea, the latter showing the lowest levels. The assessment of possible sources using PAH ratios (phenanthrene/anthracene and fluoranthene/pyrene) did not reveal a clear tendency regarding the distinction of petrogenic and pyrogenic sources in general, reflecting heterogeneous sources of PAHs in the Ebro area.  相似文献   

15.
Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone onforest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document direct foliar injury irrespective of direct measure ofozone uptake. We used bioindicator and field plot data from theUSDA Forest Service to identify tree species likely to exhibit regional-scale ozone impacts. Approximately 24% of sampled sweetgum (Liquidambar styraciflua), 15% of sampled loblollypine (Pinus taeda), and 12% of sampled black cherry (Prunus serotina) trees were in the highest risk category. Sweetgum and loblolly pine trees were at risk on the coastal plain of Maryland, Virginia and Delaware. Black cherry trees were at riskon the Allegheny Plateau (Pennsylvania), in the Allegheny Mountains (Pennsylvania, West Virginia, and Maryland) as well ascoastal plain areas of Maryland and Virginia. Our findings indicate a need for more in-depth study of actual impacts on growth and reproduction of these three species.  相似文献   

16.
Hourly concentrations of ozone (O(3)), 55 volatile organic compounds (VOCs, ozone precursors) and nitrogen oxides (NOx) were measured at an upwind urban site, a downwind suburban site, and a rural site in central Taiwan, from January 2003 to December 2006. VOC and NOx mean concentrations showed a gradient from high to low across the urban (56 ppb and 34 ppb), suburban (38 ppb and 27 ppb) and rural sites (25 ppb and 21 ppb) but a reverse gradient in ozone across these sites (24, 27, and 29 ppb, respectively). Although there was about twice the difference in VOC concentrations between the urban and rural sites, nearly 65% ozone formation potential was contributed to by the same 9 VOCs. Seasonal patterns showed peak ozone levels in autumn and minima in summer at the urban site, but minima in winter at the downwind suburban and rural sites. Ozone precursor levels, on the other hand, were lowest in summer and highest in winter. The diurnal pattern showed that ozone levels peaked one hour later at the rural site than at the urban site. The ethylbenzene to m,p-xylene ratio, an indicator of the age of the air mass, increased from 0.4 at the urban site to 0.6 at the suburban site and 0.8 at the rural site during daily peak ozone times. This finding suggests the transport of ozone and precursors from upwind to downwind producing elevated ozone levels in the suburban and rural areas. Ozone episodes occurred mostly in days with a mean midday UV index of 6.5 (1 UV index=100 J m(-2)) and wind speed at 1.3 m s(-1) at all three sites.  相似文献   

17.
Protected areas decrease degrading natural ecosystems due to pollution such as air pollution. In 1981, the inhabitants founded Bentael natural reserve in Byblos, Lebanon, to secure their region against urbanization projects, like the recently constructed road that threatens the biodiversity of the reserve. This study was conducted to determine the oxidative stress resulting from this pollution and that menaces 360 floral species among them a rare species “Urginea maritima.” In this research, the biomonitoring approach was experienced to assess the oxidative stress. Biomonitoring possesses has the advantage to be low cost and a constructive method to generate valuable data for further examinations. The studied parameters were air pollutants, ascorbic acid, photosynthetic pigments, leave’s pH, relative water content, proline, carbohydrates, and hydrogen peroxide, in three chosen spots, near the pollution source (P1), opposite the latter spot (P2), and in an area relatively far from the source of contamination and which was chosen as the control site (Ctrl). The results showed in P1 detection of air pollutants higher of about 80% than in Ctrl, modifications in stress markers: increased concentration of the reactive oxygen species “hydrogen peroxide,” rise in the concentration of the osmoregulator amino acid “proline,” and depletion in chlorophyll content, in contrast to an increase in pheophytin. All these findings can be exploited as early diagnosis of air pollution and confirmed the ability to use such biomonitor (“Urginea maritima”) as a way to assess the environmental pollution levels and consequently affirm the danger of such landscape activities on natural reserves.  相似文献   

18.
Indicators were devised to classify air pollution monitoring sites according to the type of expected photochemical pollution. The indicators are based on measured ozone volume fractions, the most frequently monitored component of photochemical pollution, and in particular on two contributions: one due to the ratio of daily maximum-to-minimum ozone volume fractions and the other to observed peak values. The two contributions regarded as independent are logically connected by “and” and therefore mathematically combined by multiplication. The criterion of classification is mainly described by the mentioned ratio and incidences of ozone volume fractions exceeding the limit of 80 ppb. Twelve monitoring stations within the European network (Cooperative programme for monitoring and evaluation of long-range transmission of air pollutants in Europe, EMEP) were classified according to this indicator predicting what ozone levels can be expected at the particular sites during the growth season (April through September) into three groups: clean, medium, and polluted, based on the data for the 7 years (1997 to 2003).  相似文献   

19.
A new all season passive sampling system for monitoring O3 in the atmosphere has been developed in the laboratory and validated in the field. The unique features for this system include a newly designed passive sampler and a rain shelter, which allow the passive sampler to be installed in the field facing downwards. An equation associated with meteorological parameters is used to calculate the passive sampling rates. This system has been extensively tested in the lab (temperature from –18 to 20°C, relative humidity from 13 to 81%, and wind speed from 0.5 to 150 cm/s) and validated in the field in climates of all seasons. The accuracy of the ozone concentrations in the atmosphere obtained with the use of the new passive sampling system was higher than 85% compared to those obtained with continuous ozone analyzers. The new ozone passive sampling system can be used to measure ambient O3 concentrations ranging from 3 ppb to 1000 ppb based on one-day exposure and 0.1 ppb to 140 ppb for a monthly exposure period. It is also reasonable to conclude that the new passive sampling system can be used for eight-hour exposure study because of the low field blanks and high sampling rates.  相似文献   

20.
通过区域空气质量模型CAMx对大连市2015年8月近地面臭氧(O_3)污染进行模拟,探讨了O_3及其生成前体物(NOx和VOCs)的来源,O_3生成控制区,并根据敏感性分析结果对前体物排放的控制效果进行了定量评估。结果表明:本地NOx排放对大连地区的NOx浓度贡献占90%以上,本地VOCs排放对大连地区的VOCs浓度贡献占80%以上,而本地NOx和VOCs排放对大连地区O_3浓度贡献仅占29%;大连市整体上为VOCs控制区,控制VOCs能有效降低O_3污染,还能有效削减O_3的峰值浓度;通过敏感性分析结果计算得出,削减大连本地工业源VOCs和民用源VOCs能够有效降低大连地区O_3浓度,削减10%的工业源VOCs能使市区O_3平均浓度降低2%左右,削减10%的民用源VOCs能使大连市区平均O_3浓度降低1%左右。建议NOx与VOCs削减比例为1∶2,对大连市O_3和PM2.5污染进行协同控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号