首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human actions on landscapes are a principal threat to the ecological integrity of river ecosystems worldwide. Tropical landscapes have been poorly investigated in terms of the impact of catchment land cover alteration on water quality and biotic indices in comparison to temperate landscapes. Effects of land cover in the catchment at two spatial scales (catchment and site) on stream physical habitat quality, water quality, macroinvertebrate indices and community composition were evaluated for Uma Oya catchment in the upper Mahaweli watershed, Sri Lanka. The relationship between spatial arrangement of land cover in the catchment and water quality, macroinvertebrate indices and community composition was examined using univariate and multivariate approaches. Results indicate that chemical water quality variables such as conductivity and total dissolved solids are mostly governed by the land cover at broader spatial scales such as catchment scale. Shannon diversity index was also affected by catchment scale forest cover. In stream habitat features, nutrients such as N-NO3 ?, macroinvertebrate family richness, %shredders and macroinvertebrate community assemblages were predominantly influenced by the extent of land cover at 200 m site scale suggesting that local riparian forest cover is important in structuring macroinvertebrate communities. Thus, this study emphasizes the importance of services provided by forest cover at catchment and site scale in enhancing resilience of stream ecosystems to natural forces and human actions. Findings suggest that land cover disturbance effects on stream ecosystem health could be predicted when appropriate spatial arrangement of land cover is considered and has widespread application in the management of tropical river catchments.  相似文献   

2.
Dal Lake, a cradle of Kashmiri civilization has strong linkage with socioeconomics of the state of Jammu and Kashmir. During last few decades, anthropogenic pressures in Dal Lake Catchment have caused environmental deterioration impairing, inter-alia, sustained biotic communities and water quality. The present research was an integrated impact analysis of socioeconomic and biophysical processes at the watershed level on the current status of Dal Lake using multi-sensor and multi-temporal satellite data, simulation modelling together with field data verification. Thirteen watersheds (designated as ‘W1–W13’) were identified and investigated for land use/land cover change detection, quantification of erosion and sediment loads and socioeconomic analysis (total population, total households, literacy rate and economic development status). All the data for the respective watersheds was integrated into the GIS environment based upon multi-criteria analysis and knowledge-based weightage system was adopted for watershed prioritization based on its factors and after carefully observing the field situation. The land use/land cover change detection revealed significant changes with a uniform trend of decreased vegetation and increased impervious surface cover. Increased erosion and sediment loadings were recorded for the watersheds corresponding to their changing land systems, with bare and agriculture lands being the major contributors. The prioritization analysis revealed that W5?>?W2?>?W6?>?W8?>?W1 ranked highest in priority and W13?>?W3?>?W4?>?W11?>?W7 under medium priority. W12?>?W9?>?W10 belonged to low-priority category. The integration of the biophysical and the socioeconomic environment at the watershed level using modern geospatial tools would be of vital importance for the conservation and management strategies of Dal Lake ecosystem.  相似文献   

3.
The Catskill/Delaware reservoirs supply 90% of New York City’s drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to Agency’s administrative review and approved for publication as an EPA document.  相似文献   

4.
The Nassau River estuary is located in northeast Florida adjacent to the eutrophic St. Johns River. Historically, development has been sparse in the Nassau River's catchment; thus, the system may provide a relatively undisturbed aquatic environment. To monitor the condition of the Nassau River estuary and to discern spatial and temporal trends in water quality, nutrients and hydrographic variables were assessed throughout the estuary from 1997 to 2011. Hydrographic (temperature, salinity, total suspended solids, and turbidity) and nutrient parameters (total phosphorus, ortho-PO4 3?, total nitrogen, NH4 +, total Kjeldahl nitrogen, and NO3 ?) were monitored bimonthly at 12 sites in the mesohaline and polyhaline zones of the river. Nonparametric Kendall's Tau was implemented to analyze long-term water quality patterns. Salinity was found to increase with time, particularly in the mesohaline sampling sites. Dissolved oxygen decreased over time in the estuary and hypoxic conditions became increasingly frequent in the final years of the study. Nutrients increased in the estuary, ranging from 149 to 401 %. Rainfall data collected in adjacent conservation areas did not correlate well with nutrients as compared with stream discharge data collected in the basin headwaters, outside of the conservation lands, attributed here to expanding urbanization. During the study period, the Nassau basin underwent rapid human population growth and land development resulting in commensurate impacts to water quality. Nutrient and physical data collected during this study indicate that the Nassau River estuary is becoming more eutrophic with time.  相似文献   

5.
Water quality of rivers is strongly influenced by landscape characteristics of their watershed, including land use /cover types, and their spatial configuration. This research evaluates the effects of land cover changes on the water quality of the Zayandehroud River, which is the most important river in the center of Iran. The main goal of this study was to quantify the change in rangelands, forests, and bare lands in the Zayandehroud river basin, which suffered intense human interference, in a period of 11 years (1997–2008), and to evaluate how landscape patterns (including the number of patches, edge density, percentage of rangelands, forests, and bare lands) influence on the 14 water quality indices (including BOD5, EC, NO3, P, and TDS) measured in 10 stations along the river. Results showed that from 1997 to 2008, bare lands increased from 5.8 to 20 %, while rangelands decreased from 70 to 55 % in the whole basin. The results indicated that water quality was significantly correlated with both the proportions and configuration of rangeland and bare land areas. The total edge (TE) of rangeland area had positive effects on water quality, especially on BOD5 and EC. Percentage of landscape (PLAND) and largest patch index (LPI) metrics of rangeland had positive effect on decreasing nutrient (NO3, PO4). The results showed that water quality was more likely degraded when there was high edge density (ED) of bare lands. Results of this study also revealed that degradation of rangeland lead to the degradation of water quality. Finding of this study highlights the importance of rangeland conservation in water quality management at landscape scale.  相似文献   

6.
Quantifying changes in the cover of river-floodplain systems can provide important insights into the processes that structure these landscapes as well as the potential consequences to the ecosystem services they provide. We examined net changes in 13 different aquatic and floodplain land cover classes using photo interpreted maps of the navigable portions of the Upper Mississippi River (UMR, above the confluence with the Ohio River) and Illinois River from 1989 to 2000 and from 2000 to 2010. We detected net decreases in vegetated aquatic area in nearly all river reaches from 1989 to 2000. The only river reaches that experienced a subsequent recovery of vegetated aquatic area from 2000 to 2010 were located in the northern portion of the UMR (above navigation pool 14) and two reaches in the Illinois River. Changes on the floodplain were dominated by urban development, which increased in nearly every river reach studied from 1989 to 2000. Agricultural lands declined in most river reaches from 2000 to 2010. The loss of agricultural land cover in the northern UMR was accompanied by increases in forest cover, whereas in the lower UMR and Illinois River, declines in agriculture were accompanied by increases in forest and shallow marsh communities. The changes in aquatic vegetation occupied between 5 and 20% of the total aquatic area and are likely associated with previously reported regional improvements in water clarity, while smaller (1–15% of the total floodplain area) changes in anthropogenic land cover types on the floodplain are likely driven by broad-scale socio-economic conditions.  相似文献   

7.
A study of the area, including Rosetta city and the estuary of the river Nile (Rosetta branch), has been carried out for assessment of the impact of sea level rise (slr). A geographic information system (GIS) has been built including layers of land use, topography, archeological sites, land cover and population. Analysis of data has been carried out to assess vulnerability of various land use and land cover classes to the impact of sea level rise.Because the area under study has geomorphic relief profiles just over the sea level, inundation of total land could reach 26% of total study area due to only half a meter rise in sea level. This lost area includes 32% of urban clusters mainly used for human shelter and contains 52% of present monuments, 25% of valuable high quality dense palm trees cultivation, 75% of beaches and 19% of lands suitable, 25% of valuable high quality dense palm trees cultivation, 75% of beaches and 19% of lands suitable for agricultural reclamation (although suffering from salt water intrusion and soil salinization). This is expected to cause a significant impact on the present population, economic activities, total regional revenue, and also on tourism. At 1.1 m sea level rise, 72% to total study area could be inundated. This area contains all beaches, half of the palm cultivation, 43% of total urban clusters, which includes 81% of the monumental sites and historic buildings.Other environmental problems such as solid waste management, sanitary disposal network, deteriorating conditions of some monumental structures, in addition to the sea level rise act negatively on the environmental quality of the urban community. Future plans for urban expansion in the area must be studied carefully in order to preserve valuable palm lands and maintain and protect monuments and historic sites which help the promotion of tourism. An environmental management program is essential for upgrading tourism, promoting urban development and protecting coastal lands.  相似文献   

8.
Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO 3 ? -N, and NH 4 + -N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009–2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO 3 ? -N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.  相似文献   

9.
Guwahati, the lone city on the bank of the entire midstream of the Brahmaputra River, is facing acute civic problem due to severe depletion of water quality of its natural water bodies. This work is an attempt towards water quality assessment of a relatively small tributary of the Brahmaputra called the Bharalu River flowing through the city that has been transformed today into a city drainage channel. By analyzing the key physical, chemical and biological parameters for samples drawn from different locations, an assessment of the dissolved load and pollution levels at different segments in the river was made. Locations where the contaminants exceeded the permissible limits during different seasons were identified by examining spatial and temporal variations. A GIS developed for the watershed with four layers of data was used for evaluating the influence of catchment land use characteristics. BOD, DO and total phosphorus were found to be the sensitive parameters that adversely affected the water quality of Bharalu. Relationship among different parameters revealed that the causes and sources of water quality degradation in the study area were due to catchments input, anthropogenic activities and poor waste management. Elevated levels of total phosphorus, BOD and depleted DO level in the downstream were used to develop an ANN model by taking total phosphorus and BOD as inputs and dissolved oxygen as output, which indicated that an ANN based predictive tool can be utilized for monitoring water quality in the future.  相似文献   

10.
Enterococci bacteria are used to indicate the presence of human and/or animal fecal materials in surface water. In addition to human influences on the quality of surface water, a cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattle may affect surface water quality directly by depositing nutrients and bacteria, and indirectly by damaging stream banks or removing vegetation cover, which may lead to increased sediment loads. This study used the State of Oregon surface water data to determine the likelihood of animal pathogen presence using enterococci and analyzed the spatial distribution and relationship of biotic (enterococci) and abiotic (nitrogen and phosphorous) surface water constituents to landscape metrics and others (e.g. human use, percent riparian cover, natural covers, grazing, etc.). We used a grazing potential index (GPI) based on proximity to water, land ownership and forage availability. Mean and variability of GPI, forage availability, stream density and length, and landscape metrics were related to enterococci and many forms of nitrogen and phosphorous in standard and logistic regression models. The GPI did not have a significant role in the models, but forage related variables had significant contribution. Urban land use within stream reach was the main driving factor when exceeding the threshold (> or =35 cfu/100 ml), agriculture was the driving force in elevating enterococci in sites where enterococci concentration was <35 cfu/100 ml. Landscape metrics related to amount of agriculture, wetlands and urban all contributed to increasing nutrients in surface water but at different scales. The probability of having sites with concentrations of enterococci above the threshold was much lower in areas of natural land cover and much higher in areas with higher urban land use within 60 m of stream. A 1% increase in natural land cover was associated with a 12% decrease in the predicted odds of having a site exceeding the threshold. Opposite to natural land cover, a one unit change in each of manmade barren and urban land use led to an increase of the likelihood of exceeding the threshold by 73%, and 11%, respectively. Change in urban land use had a higher influence on the likelihood of a site exceeding the threshold than that of natural land cover.  相似文献   

11.
Relationship between landscape characteristics and surface water quality   总被引:2,自引:0,他引:2  
The effects of landscape characteristics on surface water quality were evaluated in terms of land-use condition, soil type and slope. The case area, the Chichiawan stream in the Wulin catchment in Taiwan, is Formosan landlocked salmon's natural habitat. Due to the agriculture behavior and mankind's activities, the water and environmental quality has gradually worsened. This study applied WinVAST model to predict hydrological responses and non-point source pollution (NPSP) exports in the Wulin catchment. The land-use condition and the slope of land surface in a catchment are major effect factors for watershed responses, including flows and pollutant exports. This work discussed the possible variation of watershed responses induced by the change of land-use condition, soil type and slope, etc. The results show that hydrological responses are highly relative to the value of Curve Number (CN); Pollutant exports have large relation to the average slope of the land surface in the Wulin catchment.  相似文献   

12.
The Bode catchment (Germany) shows strong land use gradients from forested parts of the National Park (23 % of total land cover) to agricultural (70 %) and urbanised areas (7 %). It is part of the Terrestrial Environmental Observatories of the German Helmholtz association. We performed a biogeochemical analysis of the entire river network. Surface water was sampled at 21 headwaters and at ten downstream sites, before (in early spring) and during the growing season (in late summer). Many parameters showed lower concentrations in headwaters than in downstream reaches, among them nutrients (ammonium, nitrate and phosphorus), dissolved copper and seston dry mass. Nitrate and phosphorus concentrations were positively related to the proportion of agricultural area within the catchment. Punctual anthropogenic loads affected some parameters such as chloride and arsenic. Chlorophyll a concentration and total phosphorus in surface waters were positively related. The concentration of dissolved organic carbon (DOC) was higher in summer than in spring, whereas the molecular size of DOC was lower in summer. The specific UV absorption at 254 nm, indicating the content of humic substances, was higher in headwaters than in downstream reaches and was positively related to the proportion of forest within the catchment. CO2 oversaturation of the water was higher downstream compared with headwaters and was higher in summer than in spring. It was correlated negatively with oxygen saturation and positively with DOC concentration but negatively with DOC quality (molecular size and humic content). A principle component analysis clearly separated the effects of site (44 %) and season (15 %), demonstrating the strong effect of land use on biogeochemical parameters.  相似文献   

13.
To explore the value of high-frequency monitoring to characterise and explain riverine nutrient concentration dynamics, total phosphorus (TP), reactive phosphorus (RP), ammonium (NH4-N) and nitrate (NO3-N) concentrations were measured hourly over a 2-year period in the Duck River, in north-western Tasmania, Australia, draining a 369-km2 mixed land use catchment area. River discharge was observed at the same location and frequency, spanning a wide range of hydrological conditions. Nutrient concentrations changed rapidly and were higher than previously observed. Maximum nutrient concentrations were 2,577 μg L?1 TP, 1,572 μg L?1 RP, 972 μg L?1 NH4-N and 1,983 μg L?1 NO3-N, respectively. Different nutrient response patterns were evident at seasonal, individual event and diurnal time scales—patterns that had gone largely undetected in previous less frequent water quality sampling. Interpretation of these patterns in terms of nutrient source availability, mobilisation and delivery to the stream allowed the development of a conceptual model of catchment nutrient dynamics. Functional stages of nutrient release were identified for the Duck River catchment and were supported by a cluster analysis which confirmed the similarities and differences in nutrient responses caused by the sequence of hydrologic events: (1) a build-up of nutrients during periods with low hydrologic activity, (2) flushing of readily available nutrient sources at the onset of the high flow period, followed by (3) a switch from transport to supply limitation, (4) the accessibility of new nutrient sources with increasing catchment wetness and hydrologic connectivity and (5) high nutrient spikes occurring when new sources become available that are easily mobilised with quickly re-established hydrologic connectivity. Diurnal variations that could be influenced by riverine processes and/or localised point sources were also identified as part of stage (1) and during late recession of some of the winter high flow events. Illustrated by examples from the Duck River study, we demonstrate that the use of high-frequency monitoring to identify and characterise functional stages of catchment nutrient release is a constructive approach for informing and supporting catchment management and future nutrient monitoring strategies.  相似文献   

14.
A proactive sampling strategy was designed and implemented in 2000 to document changes in streams whose catchment land uses were predicted to change over the next two decades due to increased building density. Diatoms, macroinvertebrates, fishes, suspended sediment, dissolved solids, and bed composition were measured at two reference sites and six sites where a socioeconomic model suggested new building construction would influence stream ecosystems in the future; we label these "hazard sites." The six hazard sites were located in catchments with forested and agricultural land use histories. Diatoms were species-poor at reference sites, where riparian forest cover was significantly higher than all other sites. Cluster analysis, Wishart's distance function, non-metric multidimensional scaling, indicator species analysis, and t-tests show that macroinvertebrate assemblages, fish assemblages, in situ physical measures, and catchment land use and land cover were different between streams whose catchments were mostly forested, relative to those with agricultural land use histories and varying levels of current and predicted development. Comparing initial results with other regional studies, we predict homogenization of fauna with increased nutrient inputs and sediment associated with agricultural sites where more intense building activities are occurring. Based on statistical separability of sampled sites, catchment classes were identified and mapped throughout an 8,600 km(2) region in western North Carolina's Blue Ridge physiographic province. The classification is a generalized representation of two ongoing trajectories of land use change that we suggest will support streams with diverging biota and physical conditions over the next two decades.  相似文献   

15.
Rural coastal aquifers are undergoing rapid changes due to increasing population, high water demand with expanding agricultural and domestic uses, and seawater intrusion due to unmanaged water pumping. The combined impact of these activities is the deterioration of groundwater quality, public health concerns, and unsustainable water demands. The Kalpitiya peninsula located northwest of Sri Lanka is one area undergoing such changes. This land area is limited and surrounded almost completely by sea and lagoon. This study consists of groundwater sampling and analysis, and vulnerability assessment using the DRASTIC method. The results reveal that the peninsula is experiencing multiple threats due to population growth, seawater intrusion, land use exploitation for intensive agriculture, groundwater vulnerability from agricultural and domestic uses, and potential public health impacts. Results show that nitrate is a prevalent and serious contaminant occurring in large concentrations (up to 128 mg/l NO3?CN), while salinity from seawater intrusion produces high chloride content (up to 471 mg/l), affecting freshwater sources. High nitrate levels may have already affected public health based on limited sampling for methemoglobin. The two main sources of nitrogen loadings in the area are fertilizer and human excreta. The major source of nitrogen results from the use of fertilizers and poor management of intense agricultural systems where a maximum application rate of up to 11.21 metric tons N/km2 per season is typical. These findings suggest that management of coastal aquifers requires an integrated approach to address both the prevalence of agriculture as an economic livelihood, and increasing population growth.  相似文献   

16.
Research on water quality degradation caused by point and diffuse source pollution plays an important role in protecting the environment sustainably. Implementation of Best Management Practices (BMPs) is a conventional approach for controlling and mitigating pollution from diffuse sources. The objectives of this study were to assess the long-term impact of point and diffuse source pollution on sediment and nutrient load in a lowland catchment using the ecohydrological model Soil and Water Assessment Tool (SWAT) and to evaluate the cost and effectiveness of BMPs for water quality improvement in the entire catchment. The study area, Kielstau catchment, is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants. Diffuse entries as well as punctual entries from the wastewater treatment plants are implemented in the model set-up. Results from model simulations indicated that the SWAT model performed satisfactorily in simulating flow, sediment, and nutrient load in a daily time step. Two approaches to structural and nonstructural BMPs have been recommended in relation to cost and effectiveness of BMPs in this study. These BMPs include extensive land use management, grazing management practice, field buffer strip, and nutrient management plan. The results showed that BMPs would reduce fairly the average annual load for nitrate and total nitrogen by 8.6% to 20.5%. However, the implementation of BMPs does not have much impact on reduction in the average annual load of sediment and total phosphorus at the main catchment outlet. The results obtained by implementing those BMPs ranged from 0.8% to 4.9% and from 1.1% to 5.3% for sediment and total phosphorus load reduction, respectively. This study also reveals that reduction only in one type of BMP did not achieve the target value for water quality according to the European Water Framework Directive. The combination of BMPs improved considerably water quality in the Kielstau catchment, achieving a 53.9% and a 46.7% load reduction in nitrate and total nitrogen load, respectively, with annual implementation cost of 93,000 Euro.  相似文献   

17.
The impact of point (domestic and industrial effluents) and non-point (agricultural land runoff) pollution sources on the quality of the receiving waters of the Evrotas River (Laconia, Greece) was investigated during a monitoring study from August 1991 to August 1992. The part of the river which was located near the city of Sparta was seasonally influenced by the discharge of effluents from orange juice plants (operating during winter) and by the discharge of septage for the emptying of cesspools which are serving part of the city. The low dilution of incoming pollutants (septage) during the low water flow in summer lead to the decreasing self-purification capacity of the river and the development of septicity conditions in some of its parts. In the vicinity of intensively cultivated areas, the high concentrations of nitrogen and phosphorus which were detected in the river water during winter and spring may be partly attributed to the leaching of the applied fertilizers because of nirogen mobilization and soil erosion, following the season's precipitations. The protection of the Evrotas River water Quality must therefore include adequate treatment of the septage produced in the area, as well as the construction of wastewater treatment plants for the major industries of the area. The non-point pollution could be controlled by the restoration of the Evrotas riparian vegetation, together with a more rational use of fertilizers in the area.  相似文献   

18.
Selection of appropriate sampling stations in a lake through mapping   总被引:1,自引:0,他引:1  
Much valuable information is obtained from water quality measurements and monitoring of lakes around the world. A powerful tool is the use of mapping techniques, as it offers potential use in water quality research. Both remote sensing techniques and traditional water quality monitoring are required to collect data at sampling stations. This study suggests another approach to determine the most appropriate distribution of sampling stations in water reservoirs that will be mapped for water quality parameters. Tests were conducted for the proposed approach for Secchi disc depth (SDD), chlorophyll-a, turbidity and suspended solids parameters in Lake Beysehir, Turkey. Results of analysis are available for a total of 30 sampling stations in August 2006. Ten sampling stations were used to model Lake Beysehir while the others were used for validation of the model. Sampling stations that offered the best representation of the lake for each parameter were determined. Then, the best representative sampling stations for all parameters in the study were determined. Moreover, in order to confirm the accuracy of these re-determined sampling stations, modelling was performed on the results of the analysis of June 2006, and it was found that the values obtained from the re-determined sampling stations were acceptable.  相似文献   

19.
Groundwater is connected to the landscape above and is thus affected by the overlaying land uses. This study evaluated the impacts of land uses upon groundwater quality using trilinear analysis. Trilinear analysis is a display of experimental data in a triangular graph. Groundwater quality data collected from agricultural, septic tank, forest, and wastewater land uses for a 6-year period were used for the analysis. Results showed that among the three nitrogen species (i.e., nitrate and nitrite (NOx), dissolved organic nitrogen (DON), and total organic nitrogen (TON)), NOx had a high percentage and was a dominant species in the groundwater beneath the septic tank lands, whereas TON was a major species in groundwater beneath the forest lands. Among the three phosphorus species, namely the particulate phosphorus (PP), dissolved ortho phosphorus (PO 4 3?? ) and dissolved organic phosphorus (DOP), there was a high percentage of PP in the groundwater beneath the septic tank, forest, and agricultural lands. In general, Ca was a dominant cation in the groundwater beneath the septic tank lands, whereas Na was a dominant cation in the groundwater beneath the forest lands. For the three major anions (i.e., F?, Cl?, and SO 4 2?? ), F? accounted for <1 % of the total anions in the groundwater beneath the forest, wastewater, and agricultural lands. Impacts of land uses on groundwater Cd and Cr distributions were not profound. This study suggests that trilinear analysis is a useful technique to characterize the relationship between land use and groundwater quality.  相似文献   

20.
为了解泰东河疏浚工程对通榆河水质的影响,于2012年6月8日、9月12日、12月6日,对泰东河沿线以及通榆河东台段进行调查取样,分析施工期间河体水质变化。结果表明,施工期间水质参数基本保持在Ⅱ~Ⅲ类。根据江苏省水环境监测中心盐城分中心2011年、2013年监测资料评价分析,泰东河河道疏浚后,清理了河床淤泥,提高了泰东河的行洪、抗洪以及通航能力,其水质的好转有效地改善了下游通榆河的水质,确保了饮水安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号