首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
第一章总则第一条为了规范锅炉、压力容器(含气瓶、医用氧舱,下同)和压力管道设备事故处理工作,加强锅炉、压力容器和压力管道的安全管理,保障人民生命和财产的安全,根据忡华人民共和国劳动法》和《锅炉压力容器安全监察暂行条例》的有关规定,制定本规定。第二条锅炉、压力容器和压力管道设备发生事故的报告、调查、处理和结案适用规定。第三条锅炉、压力容器和压力管道事故按设备损坏程度分为爆炸事故、严重损坏事故和一般损坏事故。爆炸事故是指锅炉、压力容器和压力管道在使用中或压力试验时,受压部件发生破坏,设备中介质蓄积的…  相似文献   

2.
第一章总则第一条为了规范锅炉、压力容器(含气瓶、医用氧舱,下同)和压力管道设备事故处理工作,加强锅炉、压力容器和压力管道的安全管理,保障人民生命和财产的安全,根据(中华人民共和国劳动法)和(锅炉压力容器安全监察暂行条例》的有关规定,制定本规定。第二条锅炉、压力容器和压力管道设备发生事故的报告、调查、处理和结案适用本规定。第三条锅炉、压力容器和压力管道事故按设备损坏程度分为爆炸事故、严重损坏事故和一般损坏事故。爆炸事故是指锅炉、压力容器和压力管道在使用中或压力试验时,受压部件发生破坏,设备中介质蓄…  相似文献   

3.
中小城市的在用压力容器种类多、数量大,运行参数多变,同时介质多种多样,故发生事故的危险性很大。这就需要检验人员了解介质特性,熟悉生产工艺,弄清使用中缺陷的产生机理和多发部位,据此制定不同类型容器的检验方案,以减小检验的盲目性,做到有的放矢,突出重点。本人通过近千台压力容器的定期检验,发现在用压力容器检验中,钢板的夹层缺陷较为常见,为此切实解决好定期检验中夹层缺陷,就成为保证压力容器安全运行的一个重要问题。  相似文献   

4.
压力容器是一种特殊设备,极易发生灾害性事故。加上使用这种设备的企业很多,并且深入到居民的生活领域,因此,保证压力容器的安全运行,是保护工人和居民的生命安全的重要内容。 压力容器的事故发生率比较高,主要原因有:(1)压力容器的结构较为简单,但其受压部件的受力情况却很复杂。特别是在开孔附近及其他几何形状突变的部位,这个问题更突出;(2)压力容器的使用条件比较苛刻;(3)与其他设备相比,压力容器比较容易超载,而且一旦超载就会迅速造成破坏事故;(4)工作介质有腐蚀性,会使压力容器金属壁强度降低。 这一讲重点介绍压力容器的安全问题O …  相似文献   

5.
<正>在压力容器的置换过程中,如果置换介质使用错误或者置换介质中含有危险杂质,往往会导致置换工作失效,严重的还会造成设备损坏和人员伤亡事故。本文以重庆市"9.1"甲醇合成塔损坏事故为例,探讨压力容器置换工作中应注意的安全要点。1事故基本情况2009年9月1日1 7:00重庆市某化工股份有限公司晚班操作人员按调度要求,切断补充  相似文献   

6.
压力容器的安全操作与维护   总被引:1,自引:0,他引:1  
王燕 《安全》2008,29(9):45-46
压力容器设计的承压能力、耐蚀性能和耐高低温性能是有条件、有限度的。操作的任何失误都会使压力容器过早失效甚至酿成事故。国内外压力容器事故统计资料显示,因操作失误引发的事故占50%以上。特别是化工新产品不断开发、容器日趋大型化、高参数和中高强钢广泛应用的条件下,更应重视因操作失误引起的压力容器事故。  相似文献   

7.
王喆 《劳动保护》2003,(2):68-69
锅炉压力容器是具有爆炸危险的特种设备,在经济建设和人民生活中得到广泛使用,因用途不同,其设计制造千变万化、形状各异。有数十米高的电站锅炉、高塔容器及数千立方米的球型容器;同时,它们承受高温、高压、易燃易爆剧毒或强腐蚀性介质。为达到安全使用目的,需定期对其进行在役检验。但在过去的检验工作中,曾发生过中毒、窒息、辐射、坠落、爆炸等事故,造成人身伤害及财产损失,教训深刻。一、检验中常见的危险缺陷、表现形式及易产生事故类型在锅炉压力容器检验过程中,依据锅炉压力容器设备种类及使用范围不同,对其内部受压元件、…  相似文献   

8.
锅炉是指利用燃料(煤、油、气)燃烧后产生的热量,加热工作介质(一般是水),使之产生一定温度和压力的热水或蒸汽以供外界应用的一种热能设备。压力容器是指盛有各种工作介质的,其所承受压力超过外界压力的容器。 由于锅炉和压力容器是承压的,具有爆炸和其它灾害性事故危险的设备,其所盛的工作介质具有高温、低温、易燃、易爆、有毒或腐蚀等特性。例如:发电设备具有高温  相似文献   

9.
压力容器广泛用于化工制药行业 ,它是化学药物合成过程的主要生产设备。其工作介质大都具有易燃易爆、有毒和腐蚀性强的特点 ,而且 ,工艺参数范围也较大 ,工作条件极为复杂 ,一旦发生事故 ,危害极大。因此 ,必须认真贯彻执行《压力容器安全技术监察规程》(以下简称《容规》) ,加强压力容器管理 ,确保其安全运行。从化工制药行业近期连续发生的多起蒸馏罐和反应罐罐盖、人孔盖飞起 ,夹套爆裂等压力容器事故的原因来看 ,目前压力容器的使用与管理中还存在着一些不容忽视的问题 ,主要表现在以下几个方面 :一、法制观念淡薄 ,盲目使用压力容器…  相似文献   

10.
焊接裂纹引起压力容器事故的原因分析   总被引:1,自引:0,他引:1  
焊接裂纹引起压力容器事故的原因分析安晶(劳动部锅炉压力容器检测研究中心,北京100027)众所周知,压力容器是现代社会极为重要的特种设备,当其发生断裂事故时,特别是在高温、高的交变热应力及在腐蚀环境下运行的压力容器,一旦发生断裂,就会给社会造成重大损...  相似文献   

11.
The method of explosion venting is widely used in industrial explosion-proof design due to its simple operation, economical and practical features. A dump vessel vented platform was built. By changing the vacuum level and the gas in the dump vessels and the structural size of linked vessels, the pressure in the explosion vessel and the dump vessel was compared, and the influencing factors of explosion venting investigated. The main conclusions are as follows: In the explosion venting process, the higher the vacuum in the dump vessel, the smaller the pressure peak of the explosion vessel and the dump vessel, and the faster the explosion pressure is lowered. When the dump vessel is under the same vacuum level and the gas in the dump vessel is CO2, the maximum pressure of the explosion vessel and the dump vessel is less than the maximum pressure when the containment medium is air. Under the same vacuum condition, the larger the volume ratio of the dump vessel and the explosion vessel, the smaller the pressure peak of the explosion vessel, the faster the explosion pressure drops, and the volume of the dump vessel reaches or exceeds the explosion vessel. Increasing the volume ratio of the containment vessel to the explosion vessel facilitates protection of the explosion vessel and the containment vessel. Under the same vacuum condition, when the gas explosion in 113 L vessel vents into 22 L vessel, the longer the length of the pipe, the greater the maximum pressure in the spherical vessel. When the gas explosion in 22 L vessel vents into 113 L dump vessel, as the pipeline grows, the maximum pressure in the two vessels decreases, but the reduction is not significant. In practical application, it is recommended to use a vacuum of 0.08Mpa or more for the dump vessel vented, and the containment medium is CO2.In terms of the structural size of the container, it is recommended that the ratio of the receiving container to the explosion container be as large as possible, and the pipe length be as long.  相似文献   

12.
针对爆炸容器工作时 ,产生的爆炸冲击波、破片、有害气体、振动及噪声等危害因素 ,简述了国内外使用爆炸容器时 ,采取的一些相关安全技术措施 ;提出了将结构健康监测技术应用于爆炸容器寿命安全评估的构想  相似文献   

13.
多功能球形爆炸容器研究   总被引:1,自引:0,他引:1  
20L球形爆炸容器是通用的研究气体、可燃液体蒸气和粉尘等爆炸参数的重要仪器。本文以现有的压力容器标准为依据,将爆炸瞬态载荷转换成等效静态载荷,运用动力系数法,研究出了一种可用来做气体、可燃液体蒸气和粉尘爆炸实验的球形爆炸容器。用此球形爆炸容器进行液压实验和爆炸极限实验,实验得到甲烷的爆炸下限为4.5%,上限为14.0%;乙醇蒸气爆炸下限为2.5%,上限为15.0%;10μm镁粉粉尘爆炸下限为45g/m3,实验所得数据与文献中的差别不大。结果证明本文所设计的多功能球形爆炸容器科学合理,能够满足爆炸实验要求。  相似文献   

14.
为了解泄爆容器中粉尘爆炸的发展过程,采用试验和数值模拟相结合的方法对玉米淀粉在圆柱形容器内的泄爆过程进行研究。数值模型采用欧拉–拉格朗日方法模拟粉尘爆炸的两相流问题,通过求解非稳态的湍流两相反应流守恒方程对试验进行二维仿真。试验和模拟结果表明,点火位置对爆炸发展过程有明显影响,点火位置离泄爆口越远,容器中的最大泄爆压力Pred,max越高。在粉尘爆炸的安全防护设计中,应把点火位置作为重要影响因素之一加以考虑。  相似文献   

15.
Gas explosion in connected vessels usually leads to high pressure and high rate of pressure increase which the vessels and pipes can not tolerate. Severe human casualties and property losses may occur due to the variation characteristics of gas explosion pressure in connected vessels. To determine gas explosion strength, an experimental testing system for methane and air mixture explosion in a single vessel, in a single vessel connected a pipe and in connected vessels has been set up. The experiment apparatus consisted of two spherical vessels of 350 mm and 600 mm in diameter, three connecting pipes of 89 mm in diameter and 6 m in length. First, the results of gas explosion pressure in a single vessel and connected vessels were compared and analyzed. And then the development of gas explosion, its changing characteristics and relevant influencing factors were analyzed. When gas explosion occurs in a single vessel, the maximum explosion pressure and pressure growth rate with ignition at the center of a spherical vessel are higher than those with ignition on the inner-wall of the vessel. In conclusion, besides ignition source on the inner wall, the ignition source at the center of the vessels must be avoided to reduce the damage level. When the gas mixture is ignited in the large vessel, the maximum explosion pressure and explosion pressure rising rate in the small vessel raise. And the maximum explosion pressure and pressure rising rate in connected vessels are higher than those in the single containment vessel. So whenever possible, some isolation techniques, such as fast-acting valves, rotary valves, etc., might be applied to reduce explosion strength in the integrated system. However, when the gas mixture is ignited in the small vessel, the maximum explosion pressures in the large vessel and in the small vessel both decrease. Moreover, the explosion pressure is lower than that in the single vessel. When gas explosion happens in a single vessel connected to a pipe, the maximum explosion pressure occurs at the end of the pipe if the gas mixture is ignited in the spherical vessel. Therefore, installing a pipe into the system can reduce the maximum explosion pressure, but it also causes the explosion pressure growth rate to increase.  相似文献   

16.
利用球型容器与管道组合,开展连通容器气体爆炸与泄爆实验,分析连通条件下,火焰在管道中的传播过程及其对起爆容器和传爆容器的压力影响。实验结果表明:连通容器气体爆炸中,火焰从起爆容器到传爆容器传播经历了一段不断加速,但加速度不断减小的过程;泄爆过程中,火焰传播过程与密闭爆炸时基本一致。管道中火焰加速传播,使得传爆容器的爆炸压力和强度相较于作为起爆容器时均明显增加,危险更大,采用与起爆容器相同的泄爆面积,无法满足对连通容器中传爆容器的泄爆。同时,泄爆是一个快速的能量泄放过程应选择合理的泄爆方式,防止二次危害。  相似文献   

17.
为了解尺寸对球形容器连接管道甲烷-空气混合物爆炸的影响规律,利用Fluent软件,采用κ-ε湍流模型、涡耗散模型(简称EDC模型)、壁面热耗散、热辐射模型及SIMPLE算法,建立了球形容器连接管道内甲烷-空气混合物爆炸的数值模型,对容器与管道内甲烷-空气预混气体爆炸的尺寸效应进行了数值模拟。结果表明:随管道内径增大,球形容器内最大爆炸压力逐渐增大,管道末端最大爆炸压力变化无明显规律;而随管道长度增加,球形容器内最大爆炸压力逐渐减小;改变管道内径,较大体积球形容器内最大爆炸压力均大于较小体积球形容器内最大爆炸压力,最大爆炸压力上升速率的规律则相反,容器体积对管道末端最大爆炸压力的影响无明显规律。  相似文献   

18.
Explosion pressures are determined for rich methane–air mixtures at initial pressures up to 30 bar and at ambient temperature. The experiments are performed in a closed spherical vessel with an internal diameter of 20 cm. Four different igniter positions were used along the vertical axis of the spherical vessel, namely at 1, 6, 11 and 18 cm from the bottom of the vessel. At high initial pressures and central ignition a sharp decrease in explosion pressures is found upon enriching the mixture, leading to a concentration range with seemingly low explosion pressures. It is found that lowering the ignition source substantially increases the explosion pressure for mixtures inside this concentration range, thereby implying that central ignition is unsuitable to determine the explosion pressure for mixtures approaching the flammability limits.  相似文献   

19.
The paper outlines an experimental study of influence of the ignition position and obstacles on explosion development in premixed methane–air mixtures in an elongated explosion vessel. As the explosion vessel, 1325 mm length tube with 128.5 mm diameter was used. Location of the ignition was changeable, i.e., fitted in the centre or at one of ends of the tube, when the tube was in a horizontal position. When it was in a vertical position, three locations of the ignition (bottom, centre and top) were used. In the performed study, the influence of obstacles on the course of pressure was investigated. Two identical steel grids were used as the obstacles. They were placed 405 mm from either end of the tube. Their blockage ratio (grid area to tube cross-section area) was determined as 0.33 for most of experiments. A few additional experiments (with smaller blockage ratio—0.16) were also conducted in order to compare the influence of the blockage ratio on the explosion development. Also some experiments were conducted in a semi-cylindrical vessel with volume close to 40 l.

All the experiments were performed under stabilized conditions, with the temperature and pressure inside the vessel settled to room values and controlled by means of electronic devices. The pressure–time profiles from two transducers placed in the centreline of the inner wall of the explosion vessel were obtained for stoichiometric (9.5%), lean (7%) and rich (12%) methane–air mixture. The results obtained in the study, including maximum pressures and pressure–time profiles, illustrate a quite distinct influence of the above listed factors upon the explosion characteristics. The effect of ignition position, obstacles location and their BR parameters is discussed.

The additional aim of the performed experiments was to find the data necessary to validate a new computer code, developed to calculate an explosion hazard in industrial installations.  相似文献   


20.
To further understand the dynamic mechanism of dust explosion through a vent duct, we designed a small-scale cylindrical vessel connected with a vent duct and performed a dust explosion venting experiment under different opening pressures using corn starch as the explosive medium in this study. The results show that weakening effect of duct on venting is positively correlated with the opening pressure. The explosion pressure in the duct presents a three-peak-structure with time, successively caused by the membrane breaking shock wave, the secondary explosion in the tube, and the continuous combustion, and decreases gradually with the propagation distance. Meanwhile, the three pressure peaks are positively correlated with the opening pressure, while the time interval between them goes to contrary. The increase of opening pressure leads to the increase of secondary explosion intensity and reverse flow in the vessel, further accelerates the reaction rate in the vessel, and then shortens the duration of combustion in the vessel until the phenomenon of flame reignition in the vessel disappears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号