首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
地铁站内站台层发生火灾时,站台层的烟气会通过站台层到站厅层的楼扶梯蔓延至站厅层。为了研究楼扶梯口处设置空气幕对站台层烟气的阻挡效果,进行了数值模拟研究。主要研究空气幕的出口风速,出口射流角度对烟气的阻挡效果。设置的空气幕风速有3m/s,4m/s,5m/s,10m/s;设置的角度有0°,15°,30°。通过模拟对比空气幕前后温度变化,得出风幕风速为4m/s或者5m/s时即可较好阻挡烟气。角度为15°的空气幕比0°和30°的空气幕挡烟效果好。  相似文献   

2.
为研究隧道火灾时空气幕与排烟系统复合模式下的烟气蔓延规律,优化选择防排烟方式,以某越江隧道为研究对象,运用FDS数值模拟方法探究射流速度、排烟量和空气幕与排烟口间距对防排烟效果的影响。结果表明:空气幕与排烟口间距对射流特性与烟气蔓延有较强影响,间距为30 m的控烟效果最佳;空气幕与机械排烟复合作用的控烟效果远优于每个独立系统,可实现可靠挡烟和有效排烟;当火源功率20 MW时,随空气幕射流速度的增加挡烟效果有所增加,但射流速度不宜过大,取20~30 m/s;机械排烟对温度与可见度影响比空气幕作用效果显著,一定程度上增加排烟量可降低所需气幕射流速度;综合考虑防排烟的有效性和经济性,取射流速度为20 m/s、排烟量为100 m3/s为最优防排烟组合方式。  相似文献   

3.
为探明空气幕对地铁隧道内温度及流场分布的影响,通过火灾动力学求解器(FDS)研究不同火源热释放速率(HRR)、空气幕射流速度和射流角度下隧道内纵向温度、拱顶最高温度及流场分布。结果表明:火源HRR为10、15和20 MW时,空气幕射流速度至少为16、18和20 m/s才能保证烟气控制效果;当射流角度小于45°时,增大射流角度能加速拱顶温度衰减;当射流角度大于45°时,射流角度对拱顶温度衰减的影响很小;拱顶最高温度随着射流速度增大而减小,随着射流角度的增大而增大,射流角度通过影响火源与空气幕之间的旋涡来改变隧道内的温度分布。  相似文献   

4.
为了研究取消轨顶风口对地铁地下车站火灾防排烟的影响,采用CFD方法,针对全封闭站台门系统和全高站台门系统2种典型地铁车站,模拟车站公共区火灾和车站列车火灾发生时,有无轨顶风口对车站内排烟效果的影响。研究结果表明:针对车站公共区火灾,无论是全封闭站台门还是全高站台门系统,取消轨顶排烟口对公共区烟气温度、可见度、CO浓度等影响较低;但针对车站列车火灾,取消轨顶排烟口对公共区烟气温度、可见度、CO浓度均具有较大影响,排烟效果下降较多。  相似文献   

5.
利用火灾动力学模拟方法,对地下一层地铁侧式车站列车火灾的烟气蔓延规律和排烟效果进行了模拟研究。首先生成了地铁车站的三维模型,基于通风排烟系统的事故运行方案,对列车火灾烟气扩散过程、气流组织模式和烟气参数进行了计算模拟。模拟表明:排烟系统启动后,中间隧道的两端向内形成了大于5m/s的流速,屏蔽门处流速为站台流入隧道,可有效阻碍烟气进入站台区域,烟气排放主要通过车站轨顶风口排放,烟气在500s左右进入站台,排烟系统有效减缓烟气在站台的下降时间,为列车内乘客疏散提供了可用的安全疏散时间。  相似文献   

6.
在沈阳地铁二号线世纪广场站的站台层设置多个测点,利用多通道热球式风速仪进行站台层风速的测试,分析站台两端、扶梯口及站台中部各断面速度场的变化规律。测试结果表明,对于北方严寒地区采用全高非封闭式屏蔽门地铁车站,受列车活塞风影响,列车进出站时站台各测点最大风速瞬时可达到3.7m/s,站台平均风速不超过2.5m/s,活塞风持续时间200s,地铁站台的风速可以满足规范的要求,活塞风可以对站台起到辅助通风的作用。  相似文献   

7.
列车在区间隧道行进过程中,空气受挤压作用会在隧道内形成活塞风,活塞风对烟气扩散有一定的影响.为探明携火列车停站后活塞风衰减过程及其对车站轨行区上排烟系统的排烟效果影响规律,采用Fluent软件中的动网格模拟技术及Layering方法更新网格,对城际列车着火驶向地下车站及城际列车静止着火进行了仿真计算.结果表明:1)对比不同站台类型隧道列车停站后活塞风衰减过程,进站端活塞风风速均高于出站端且均在5 min后达到稳定;2)对比有无活塞风情况下地下车站排烟效果,无活塞风情况下地下车站排烟效率呈对称分布,有活塞风时地下车站排烟效率呈不对称分布;3)对比不同站台类型隧道的地下车站排烟效果,有活塞风情况下岛式站台隧道的排烟系统总排烟效率高于侧式站台隧道总排烟效率;4)岛式站台隧道无活塞风工况总排烟效率一直维持在85%左右,有活塞风工况排烟系统总排烟效率在4 min以后增至85%,最高达到90%;侧式站台隧道排烟系统总排烟效率在5 min以后增至80%左右.研究结果可为城际地下铁路车站的排烟系统设计提供参考.  相似文献   

8.
槽边射流吹吸罩已广泛应用,但以射流理论为基础的计算方法多通过经验确定关键控制参数,并进行设计和应用,忽略了一些因素对吹吸流场的影响,难以准确确定槽边射流吹吸罩控制面板位置和控制污染物所需最小风速的要求。因此,以苏联巴杜林的射流末端速度法为例,利用计算机流体力学计算技术,对不同送排风速情况下三维槽边射流吹吸罩的流场分布和毒物控制效果进行模拟分析,确定槽边射流吹吸罩控制面位于0.6~0.8 L的位置,一般取0.65 L的位置,为防止污染物扩散,控制面的风速不宜小于1.28 m/s。  相似文献   

9.
本文利用火灾模拟软件FDS,以四川消防研究所高层实验塔二层为原型,建立模型研究了防烟空气幕防烟空气幕出口风速对高层建筑前室烟气运动的影响,试验中在前室内设置18个测点,测定前室内的温度、CO浓度及能见度变化情况,试验结果表明:当风速〈1m/s时,前室内各测点处各参数变化情况与无风幕时基本相同,防烟效果不明显,风速〉2.5m/s时,随着出口风速的增加,前室内各测点处温度、CO浓度降低,能见度增加,烟气蔓延途径由前室上部逐渐变为前室下部,且前室门处0.2m、1.25m高度处测点处各参数值瞬间波动很大,综合考虑防烟的有效性及经济性,认为防烟空气幕的最佳运行风速应为2.5m/s~3.5m/s。  相似文献   

10.
综采工作面空气幕隔尘理论研究   总被引:1,自引:0,他引:1  
空气幕隔尘是综采工作面一项新的防尘技术.运用平面射流理论,针对综采工作面空间特点及风流特性,建立空气幕隔尘的数学模型,从理论上就隔尘空气幕两侧粉尘浓度分布和变化规律、空气幕隔尘效率及其与相关参数的关系进行深入研究.结果表明:1)司机侧粉尘浓度朝风流方向按指数规律不断增大,煤壁侧粉尘浓度则朝风流方向按指数规律不断下降,且两侧粉尘浓度变化速度快慢与空气幕射流卷吸风量大小有关,卷吸风量越大,两侧粉尘浓度变化速度越快;2)空气幕射流卷吸风量是影响其隔尘效果主要因素,卷吸风量越小,空气幕隔尘效率越高;3)在确定空气幕出口风速时,为保证其隔尘效率,应根据现场实测,取满足控制呼吸性粉尘所需的最小风速.  相似文献   

11.
针对当前地铁十字换乘车站缺少火灾场景系统性分析和评估的问题,釆用1∶10的地铁多线换乘车站火灾实验模型,进行十字换乘车站的火灾场景设计和对应全尺寸火源热释放率0.91~2.60 MW的火灾实验,研究十字换乘车站内站厅及站台危险位置发生火灾时的优化排烟方案。结果表明:站厅一端火灾时,站厅排烟可确保中部换乘通道和站厅另一端楼梯及出口在起火6 min内不受烟气影响;站厅中部火灾时,采用站厅排烟能保障站厅两端楼梯及出口作为疏散通道的安全性。地下2层站台或地下3层站台一端楼梯口发生火灾时,采用站台排烟与站厅送风联动的模式可控制烟气在站台内的扩散范围,确保站台未起火楼梯和站厅层在起火6 min内能够作为安全疏散通道;仅采用站台排烟可以控制烟气在站台内水平方向的扩散,但在火源功率较大时烟气会通过换乘通道和楼梯进入站厅。通过模型实验验证十字换乘车站中采用站厅站台联合通风模式的有效性,并提出多种火源功率、通风模式下的烟气扩散范围和规律,为十字换乘车站的烟气控制模式优化提供了数据支撑。  相似文献   

12.
为了研究地铁同站台高架换乘车站火灾情况,在地铁同站台高架换乘车站站厅层应急疏散路径关键节点部位开展0.25~0.75 MW规模的全尺寸实验,结合流速、烟气温度和现场观测情况,对自然通风条件下不同部位起火时的火灾危险性进行分析。结果表明:该结构车站站厅火灾危险程度受火源规模、装修形式和通风条件的影响,站厅中部闸机附近起火时,火源阻塞了站厅中部的疏散路径,掺混大量空气的低温烟气在站厅两侧出站闸机处沉降至地面高度;楼扶梯入口处起火时,站内各区域能够形成稳定的烟气分层,人眼高度能见度较高;出入口附近起火时,受自然风的影响,火源下风向区域烟气沉降严重,人眼高度的能见度较低,不利于人员疏散;在实验火灾规模下站厅各区域沉降至危险高度的烟气最高温度为30~41℃。针对此类结构车站站厅的防排烟设计,应综合考虑出入口空间布局和吊顶形式对火灾危险性的影响,利用自然风压形成一定通风换气量,同时,应将掺混空气的低温烟气控制在较小区域内,确保人员疏散路径的能见度和烟气浓度处于安全水平。  相似文献   

13.
为研究典型地下双层岛式结构地铁站站厅火灾状况下烟气温度变化规律,以南昌地铁3号线为例,分别运用PyroSim数值模拟软件和热烟测试,研究典型地下双层岛式结构地铁站站厅火灾发生6 min时间段内站厅烟气沉降时间、温度变化规律。结果表明:火灾发生6 min前,高温烟气层沉降高度主要在3.5 m及以上,烟气未沉降至能威胁人员的高度;站厅两端出入口数量不同,导致烟气呈现非对称扩散,出入口补风效果越好,烟气凝聚越少,温度越低;靠近送风口区域与附近区域相比,温度普遍较低。研究结果可为典型地下双层岛式结构地铁站站厅火灾温度传播规律研究提供参考。  相似文献   

14.
为研究特长公路隧道火灾烟气沉降对人员疏散安全的影响,通过数值模拟方法,对0,1.0,1.5 m/s和临界风速值4种不同纵向通风风速下隧道火灾烟气沉降特征进行研究,并分析不同风速下烟气沉降对人员疏散的影响。研究结果表明:在无纵向风时,烟气沉降现象较为明显,烟气下沉造成的不均匀烟气温度、能见度分布,提前终止人员疏散的进行;随着纵向风速的增加,沉降现象仍存在,但沉降点后移,对人员疏散的影响减小;在1.5 m/s的纵向通风条件下,火源下游500 m范围内烟气基本不发生沉降且能维持分层,此时几乎不影响火灾下游人员疏散。在实际应用中,火灾初期可先以1.5 m/s的分层风速值进行通风,待下游人员疏散后,再施加临界风速加快烟气排出。研究结果可为特长公路隧道火灾防治和疏散救援提供参考。  相似文献   

15.
为了研究典型长廊型高层建筑中走廊-前室缓冲区不同参数设置对烟气控制的影响,利用FDS软件建立长廊型高建筑火灾烟气运动模型。利用空气幕配合正压送风在前室门前形成防烟缓冲区,运用正交设计的方法分析流量比、空气幕射流速度以及空气幕射流角度对缓冲区防烟能力的影响,得出防烟缓冲区最佳模式为空气幕送风量与前室加压送风量之比为2∶1,空气幕射流速度为8 m/s,空气幕射流角度为30°。与传统正压送风防烟模式相比,防烟缓冲区最佳模式下,前室的平均CO浓度降低了99.99%,平均温度降低了98.47%,防烟缓冲最佳模式使前室加压送风量减少了1/3,楼梯间加压风量减少22.56%,节约了送竖井的地面积,减少了进入走廊和火场区的送风量,使排烟效率提高了8.76%。  相似文献   

16.
为了全面了解在不同通风模式下地铁十字换乘车站站厅火灾发展规律,通过在8A编组地铁十字换乘车站公共站厅层开展1 MW规模的全尺寸火灾实验,对不同通风模式下换乘地铁车站站厅层公共区火灾场景下的烟气前锋到达时间、烟气扩散与沉降范围和楼扶梯处温度等参数进行分析研究。研究结果表明:在换乘线路A线站厅层发生火灾时,受到出入口自然风以及站厅层空间结构的影响,站厅内形成了由站厅北侧向南侧方向的风压,有效抑制了烟气向B线站厅扩散;通风排烟系统能够有效降低烟气扩散速率,控制烟气扩散范围和沉降高度;针对此类结构车站站厅的防排烟设计,应综合考虑通风、出入口位置和空间构筑物对火灾烟气扩散的影响,确保火灾过程中人员疏散路径和楼扶梯处烟气层高度和烟气温度处于安全水平。  相似文献   

17.
地铁站台层发生火灾时,烟气会从站台层经过楼扶梯开口蔓延至站厅层,因此, 楼扶梯开口处的挡烟效果对人员安全疏散影响重大。通过搭建全尺寸地铁站数值模拟模 型,对细水雾幕和排烟系统作用下楼扶梯开口处的挡烟效果进行了模拟研究,结果表明 :当仅设置挡烟垂壁时,挡烟垂壁有一定的蓄烟作用,但仍有大量烟气通过楼扶梯开口 从站台层蔓延至站厅层;设置细水雾幕可在一定程度上阻止烟气通过楼扶梯开口从站台 层蔓延至站厅层,有效降低烟气温度,但由于细水雾向下的冲量破坏烟气层的稳定性, 使得细水雾幕附近的烟气层高度降低;同时设置细水雾幕和排烟系统可实现良好的挡烟 效果,在楼扶梯的中段附近已基本不受火灾烟气的影响。  相似文献   

18.
以苏州火车站地下环形车道的营运通风方案为对象,对正常运营和火灾时的需风量进行计算和分析,并采用计算流体力学方法对车道火灾模式下排烟的有效性进行了模拟研究,确定该车道采用竖井送排式加射流风机进行通风,竖井设在车道的西北和东南两个对角处,有效面积分别为10.2 m2和11.7 m2,为地下空间运营通风方案选择和计算提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号