首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
亚硝酸盐对强化生物除磷系统的影响   总被引:1,自引:0,他引:1  
为了全面了解亚硝酸盐在生物除磷系统中的作用,采用SBR反应器,研究了亚硝酸盐对聚磷菌厌氧释磷、好氧吸磷的影响及短程反硝化除磷过程中各物质质量浓度之间的关系。结果表明,厌氧段释磷量随厌氧段投加NO-2-N质量浓度提高而增加,在厌氧段的后期出现了以NO-2为电子受体的吸磷现象。在好氧段投加亚硝酸盐,当NO-2-N质量浓度从5 mg/L升高到10 mg/L时,好氧吸磷速率随NO-2-N质量浓度提高而迅速降低,但当NO-2-N质量浓度超过10 mg/L后,好氧吸磷速率随NO-2-N质量浓度提高降低速度减缓。系统缺氧除磷量与NO-2-N消耗量、缺氧除磷量与PHB(聚-β-羟基丁酸)消耗量均呈线性关系。  相似文献   

2.
温度和COD对SBR反硝化同时除磷系统除磷能力的影响   总被引:5,自引:1,他引:4  
以除磷脱氮SBR(Sequencing batch reactor)系统作为研究对象,考查了温度和COD对其反硝化,以及除磷能力的影响.结果表明,反硝化除磷适宜温度范围为18~37℃.在此温度范围内反硝化除磷速率随温度升高而提高,而且温度变化基本上不影响反硝化除磷系统PO34-去除量和NO3-转化量之间的定量关系.同时实验还发现,反硝化同时除磷系统比传统的厌氧/好氧除磷系统节省33%的碳耗.当进水PO34--P质量浓度8.0~9.2 mg/L而COD质量浓度低至220~240 mg/L时就可以保证出水PO43--P质量浓度小于0.5 mg/L.而传统的厌氧/好氧SBR除磷脱氮系统则需将进水COD质量浓度提高至350 mg/L时才能实现这一目标.  相似文献   

3.
以厌氧/好氧交替运行培养的具有脱氮除磷功能的颗粒污泥为对象,研究不同碳源条件下对除磷特性的影响。研究结果显示,醋酸钠为单一碳源培养的颗粒污泥呈淡黄色,粒径分布较均匀,主要为双球菌和短杆菌,磷平均去除率为84.77%,厌氧末端释磷量平均为89.76 mg/L,最大释磷和吸磷速率分别为106.33mg/(g·h)和50.92 mg/(g·h);乙酸钠葡萄糖为复合碳源培养的颗粒污泥呈白色和淡黄色,粒径分布不均匀,主要为单球菌,磷平均去除率为93.06%,厌氧末端释磷量平均为75.52 mg/L,最大释磷和吸磷速率分别为92.84 mg/(g·h)和28.23 mg/(g·h),两种碳源条件下表现出良好的除磷能力。  相似文献   

4.
为能更好地达到同步除磷脱氮的目的,对反硝化聚磷菌( Denitrifying Phosphorus Removal Bacteria,DPB)进行了富集培养,并对其中的典型菌株进行了特性研究.以校园生活区污水为研究对象,在温度为25℃,pH值为7.5,乙酸钠为碳源,进水COD为316.5 mg/L的条件下,采用三阶段的污泥驯化,对反硝化聚磷菌种进行了分离纯化,并对富集的典型菌株进行了生理生化试验、吸磷试验、硝酸盐还原产气试验.结果表明,富集培养后的DPB在A/O/A/O-SBR系统(厌氧2h,好氧1.5h,缺氧1.5 h,后置曝气0.5h)中成为优势菌群,系统中COD、NH4+-N、TN、TP的出水质量浓度分别为28.35 mg/L、0.87 mg/L、4.05mg/L和0.37 mg/L.分离鉴定出具有反硝化除磷能力的Z7、Z9两株典型菌株,其吸磷率均在50%左右.经细菌形态观察、生理特性分析及16S rDNA序列测定,鉴定Z7、Z9为缺氧反硝化聚磷菌,与假单胞菌(Pseudomonas)最相似,其同源性均达99.9%.  相似文献   

5.
在除磷与脱氮的联合工艺中,由于两过程所涉及的微生物在性质及最佳代谢条件上有较大差别,在同一处理流程中很难达到协调而稳定地运行问题,在传统生物除磷工艺原理基础上,就新近发现的A2/O反硝化除磷技术新工艺及其微生物学原理特点,重点介绍A2/O反硝化除磷过程中的缺氧阶段中以NO-3作为最终电子受体时,厌氧条件下释磷规律,缺氧条件下磷的去除效果以及缺氧阶段氮的变化情况.  相似文献   

6.
为明确厌氧氨氧化和反硝化协同脱氮除碳过程,采用ABR反应器控制进水氨氮和亚硝酸盐氮质量浓度分别为75 mg/L、110 mg/L,研究在不同进水COD浓度下脱氮除碳效果。结果表明,在ABR反应器的不同隔室脱氮除碳途径存在差异,低浓度COD(质量浓度120 mg/L)为Anammox菌和反硝化菌之间良好的协同作用提供了保障从而实现稳定高效脱氮除碳,TN和COD去除率分别在98%和79%以上,但在高进水COD(质量浓度120 mg/L)条件下,异养反硝化作用增强使得COD去除率可达到92%,Anammox受到限制致使总氮去除率降至70%。  相似文献   

7.
在新型后置反硝化工艺中验证了石油烃类废水治理的可行性并进一步探究p H的影响。结果表明新型后置反硝化工艺能够有效处理石油含烃类废水,稳定运行期COD,氨氮和烃类物质的去除率分别为85.2%,84.1%和86.3%。p H对COD和含烃类物质去除影响较大,而对氨氮去除影响小,并且p H=8是石油含烃类物质废水治理的最佳p H值。当p H值由6升高至8时,NO-3-N出水含量由1.9 mg/L下降至0.98mg/L,而胞内聚合物聚羟基烷酸酯(PHA)的含量却由4.85 mg/g升高至5.62 mg/g,PHA含量升高利用其在好氧和缺氧期分解产能用于反硝化。而过高p H不利于新型后置反硝化工艺烃类物质去除,脱氮和胞内聚合物的合成和积累。  相似文献   

8.
以活性污泥为种泥,通过序批式反应器(Sequencing Batch Reactor,SBR),在厌氧-缺氧-好氧交替的条件下驯化培养以硝酸盐为主要氮源的反硝化除磷细菌(Denitrifying Phosphorus-Accumulating Organisms,DPAO)。在330 d的培养时间内监测磷酸盐、硝酸盐和亚硝酸盐等常规指标,并研究驯化不同阶段的一个周期内各指标的变化及进行相应的动力学分析。结果表明,随着驯化的进行,厌氧阶段释磷速率逐渐增加,释磷量也相应增大,出水磷质量浓度最终维持在0.8mg/L,去除率达到91.8%,硝氮全部去除。通过对16S r RNA测序结果的比对,得到聚磷菌占总菌的76.93%,反硝化除磷菌占聚磷菌的一半以上。而聚糖菌仅占5.13%,聚磷菌成为优势菌种。此外,在整个驯化过程中,水质和环境条件的变化使出水中磷质量浓度出现波动,而出水硝氮的变化不大。研究表明,以硝酸盐作为主要氮源培养反硝化除磷细菌的方式是可行的,并有利于聚磷菌对聚糖菌的竞争,使聚磷菌成为优势菌种。  相似文献   

9.
反硝化生物滤池因其脱氮效果好、出水稳定等特点在污水再生处理过程中得到广泛应用。实际运行中发现,反硝化生物滤池出水经后续工艺处理后色度常常难以达标。反硝化脱氮过程存在亚硝酸盐积累的现象,进水NO_3~--N质量浓度为25 mg/L、碳源投加量为90mg/L时,反硝化滤池出水NO_2~--N质量浓度为2.87 mg/L。以反硝化生物滤池与臭氧氧化组合工艺为研究对象,开展了反硝化过程中亚硝酸盐累积对臭氧及次氯酸钠脱色的影响研究。结果表明,亚硝酸盐累积不利于后续臭氧氧化脱色过程,当反硝化生物滤池出水NO_2~--N质量浓度为3.98 mg/L、臭氧投加剂量为3 mg/L和5 mg/L时,出水色度分别为20.6和17.3,无法满足GB/T 19772—2005《城市污水再生利用地下水回灌水质》的要求(色度15)。通过投加5 mg/L的NaClO预氧化、再投加5 mg/L的臭氧使出水色度达到14.1。  相似文献   

10.
研究碳源和硝酸盐对填加聚氨酯载体的SBBR反硝化除磷的影响。在SBR中填加聚氨酯载体,将生物膜法和活性污泥法相结合,形成序批式生物膜反应器(SBBR),在厌氧/缺氧交替运行条件下利用NO3-作为电子受体,研究NaAc浓度、NaAc与丙酸钠的比例、NO3-浓度及NO3-投加方式等因素对除磷效果的影响。PO43-质量浓度在9~11 mg/L之间,COD质量浓度为200 mg/L时,SBBR有较佳的除磷效果;当进水NaAc与丙酸钠配比为2时,进水COD自身降解速率较慢,且不影响除磷效果;分批次(这里分2次)投加硝酸盐有利于硝酸盐向亚硝酸盐的转化;NO3-质量浓度为65 mg/L左右时,能获得较好的除磷、除氮效果。填加聚氨酯载体的SBR装置除磷效果较理想;碳源和硝酸盐对SBBR反硝化除磷影响显著。  相似文献   

11.
溶氧对好氧颗粒污泥同步硝化反硝化脱氮的影响   总被引:1,自引:0,他引:1  
好氧颗粒污泥外表和内在的不同溶氧(dissolved oxygen,DO)水平分别适合硝化和反硝化微生物的生长,形成具有同步硝化反硝化功能的脱氮体系.DO水平对颗粒污泥内部厌氧好氧区域的构成有影响,改变DO可以研究氧对好氧颗粒污泥同步硝化反硝化过程的影响.结果显示,反应系统在一定DO参与下对有机物的去除效率较高,各种条件下均能达到90%左右;高DO(≥3.0 mg/L)提高硝化速率,但易造成反应过程中NO2-和NO3-的积累;低DO(≤2.0mg/L)下反应积累的硝化产物少;在颗粒污泥同步硝化反硝化反应过程中适当控制供氧,可减少运行过程中N2O的排放.实验条件下,控制DO在1~2 mg/L为佳;在低DO情况下,NO2-通过短程反硝化反应直接还原为气态的N2O和N2;高DO情况下,大部分NO2-以全程反硝化方式还原为气态氮.好氧颗粒污泥具有良好的硝化反硝化能力,而DO对硝化反硝化过程有很大的影响,且低DO更有利于氮的去除和N2O排放量的降低.  相似文献   

12.
以异养硝化-好氧反硝化菌为主体,构建了微氧-缺氧双区式微生物电解池MEC(R1),并以缺氧单区MEC(R2)作为对照组,采用连续进水方式,研究其对低C/N比轻度污染废水的脱氮处理效果及微生物强化机制。结果表明,在进水COD 70~80 mg/L、TN质量浓度35~40 mg/L、电流3m A、溶解氧(DO)质量浓度0. 5~1. 0 mg/L的条件下,连续运行约1个月后,R1出水COD、TN质量浓度即可达到一级A排放标准;当C/N比为2~5时,R1出水TN质量浓度为(4. 90±1. 08)~(14. 50±0. 133) mg/L,COD为(8. 20±2. 36)~(12. 53±5. 03) mg/L,均达到了一级A标准,硝化-好氧反硝化及弱电强化作用是脱氮和COD去除的主要途径。高通量测序分析结果表明,R1中细菌多样性虽与R2相当,但细菌丰富度明显大于R2;而且,R1中的贫营养硝化反硝化菌属Zoogloea丰度明显大于R2,且含有自养型反硝化菌属Moheibacterm、好氧反硝化菌属Ferruginibacter和Denitratisoma及可为反硝化提供聚β-羟丁酸的Plasticicumulans菌属。研究表明双区式MEC可有效处理低COD、低TN、低C/N比的废水,且具有启动快的特点,具有良好的应用潜力。  相似文献   

13.
为解决城市污水处理厂脱氮除磷过程中有机碳源不足及磷资源的有效回收问题,在A~2/O反应器中抽取厌氧释磷上清液实施同步侧流化学除磷,研究了3个不同侧流比(20%、25%和30%)对生物处理系统及潜在磷回收情况的影响。结果表明,在实施3种不同程度的侧流化学除磷下,对系统氨氮去除效果的影响较小;当侧流比为20%~25%时,系统脱氮除磷能力均有所提高,同时可实现28.50%~29.48%的磷回收;当侧流比增加到30%时,系统发生污泥膨胀并恶化。随侧流比增加,厌氧释磷量逐渐降低,系统微生物胞内合成PHA质量比逐渐减小,糖原质量比逐渐增加,系统SVI与污泥含磷率的变化趋势相反。同步侧流化学除磷导致系统微生物种群结构发生较大变化,与反硝化除磷相关的Dechloromonas菌属丰度由侧流前的1.96%增至7.95%,这有助于系统脱氮除磷效果的提高。在30%侧流比下,污泥中丝硫菌属的细菌占到4.32%,这是引起污泥丝状膨胀的主要原因。侧流比不宜过大,否则会失去高效磷回收优势,要实现可持续磷酸盐回收,最佳侧流比应控制在20%。  相似文献   

14.
长泥龄污水生物除磷系统的除磷效果   总被引:1,自引:0,他引:1  
为保证磷的去除率,城市污水处理厂生物除磷系统污泥龄一般控制在15 d左右.污泥龄越短,剩余污泥排放量越大,污泥处理费用越高.为探明长泥龄污水生物除磷系统的除磷效果及其作用机理,采用厌氧/好氧(A/O)交替运行的SBR反应器,以无水乙酸钠、葡萄糖、可溶性淀粉、蛋白胨为混合碳源,模拟城市污水处理系统,对污泥龄分别为12d、20d和48 d的生物除磷系统出水总磷质量浓度进行连续监测,研究污泥龄与胞内聚合物PHB(聚羟基丁酸)和PHV(聚羟基戊酸)质量比的关系.结果表明,对于进水COD为450 mg/L,总磷质量浓度达8 mg/L的城市生活污水生物除磷系统,由于碳源充足,污泥龄达到48 d仍能保证出水总磷质量浓度长期稳定达标,长泥龄不会影响除磷效果.由于我国生活污水水质的变化,城市污水处理厂最佳污泥龄约为48d.污泥龄对聚磷菌体内的PHA(聚羟基烷酸)质量比及组成有重要影响.随着污泥龄的增长,PHA总量增加,聚磷菌得到了更多的吸磷驱动力,好氧时间不断减少,除磷效率不断增加.随着污泥龄的增长,聚菌体内的PHV质量比增加,而PHB质量比基本不变,因此PHB在PHA中占的比例有所下降.  相似文献   

15.
采用有效容积为6.3 L的上流式流化床接种普通污泥,进行了厌氧氨氧化反应器的启动,研究了先富集反硝化污泥再启动厌氧氨氧化反应器的过程特征。首先投配硝氮质量浓度70 mg/L、以葡萄糖为碳源、COD为200 mg/L的模拟废水增强污泥的反硝化能力。运行6 d后,出水硝氮质量浓度在10 mg/L左右,反应器对硝氮的去除率稳定在80%以上,污泥具有较高的反硝化活性。随后投配氨氮质量浓度50~60 mg/L、亚硝氮质量浓度30~58 mg/L的废水进行厌氧氨氧化菌培养。培养一开始出水氨氮质量浓度就比进水低,第31 d氨氮的去除率达到50%以上。逐步提高进水氨氮和亚硝酸氮质量浓度,从100 mg/L、140 mg/L、200 mg/L到420 mg/L,氨氮和亚硝氮去除率亦不断提高。第40 d后,反应器氨氮去除量、亚硝氮去除量和硝氮增加量之比在1∶(1.3±0.2)∶(0.3±0.1)范围内小幅波动,表明厌氧氨氧化反应已经成为反应器内的主导脱氮反应。经过76 d的培养,在进水氨氮和亚硝氮质量浓度分别为405.23 mg/L和488.24 mg/L时,反应器对它们的去除率达到80%和95.22%,最大氮去除速率为0.93 kg/(m3·d)。研究表明,采用上流式流化反应器先富集反硝化菌再培养厌氧氨氧化菌和采用逐步提高进水负荷的启动策略,对于快速培养高活性Anammox污泥、启动反应器是有效的。  相似文献   

16.
为解决有机碳不足抑制反硝化反应造成的脱氮效率低下的问题,在异养硝化好氧反硝化菌株qy37固定化过程中分别加入乳糖、柠檬酸钠、可溶性淀粉、蔗糖、葡萄糖作为碳源研究其脱氮效果.试验结果显示,脱氮效果从大到小为可溶性淀粉、葡萄糖、蔗糖、柠檬酸钠、乳糖;其中可溶性淀粉作为碳源的脱氮效果最佳,脱氮率能达到85%.加入适量的可溶性淀粉可以很好的改善海藻酸钠、PVA小球的机械强度,减少PVA小球吸附成团,吸水溶胀现象.分别加入质量浓度为3 g/L、5 g/L、8 g/L、10 g/L的可溶性淀粉,确定菌株qy37菌最适碳源的质量浓度为8 g/L.对碳源的包埋方式即将碳源和异养硝化好氧反硝化菌分开包埋和一起包埋进行对比.试验结果显示,将碳源和异养硝化好氧反硝化菌株qy37一起包埋的小球脱氮效果较好,最终脱氮率达到92%以上.同时发现碳源材料固定化后具有缓释性能,随着反硝化过程中有机质的消耗,可以不断向水体释放有机质.  相似文献   

17.
以实际污水为研究对象,在内循环序批汽提式反应器中培养好氧颗粒污泥并探究了好氧颗粒污泥生物脱氮除磷对盐度的响应。实验结果表明盐度对好氧颗粒污泥生物脱氮除磷有严重的抑制作用。当盐度由0增加至15 g/L时,好氧颗粒污泥生物除磷效率由82.6%下降至32.3%,氨氮去除效率由85%下降至56%。机理研究表明盐度的增加能够显著降低胞外聚合物(EPS)中多糖和蛋白质含量,以及胞内聚合物聚羟基脂肪酸酯(PHA)的含量,从而影响好氧颗粒污泥的吸附粘结性。盐度还对生物脱氮除磷关键酶具有严重的抑制作用。  相似文献   

18.
新型单级自养脱氮与反硝化除磷耦合工艺   总被引:2,自引:0,他引:2  
反硝化除磷菌(Denitrifying Polyphosphate Accumulating Organisms,DPAOs)在缺氧段需要硝氮(NO-3-N)作为电子受体进行吸磷,而氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB)和厌氧氨氧化细菌(Anaerobic ammonium oxidation,Anammox)恰好能够产生NO-3-N,基于此原理,将反硝化除磷菌与氨氧化细菌和厌氧氨氧化细菌进行联合培养,建立单级自养脱氮与反硝化除磷耦合工艺。该耦合工艺通过3个阶段的培养,在低碳氮磷比的条件下实现COD(Chemical Oxygen Demand)、氨氮及磷酸盐的同步高效去除(90%)。同时探讨了反硝化除磷细菌在不同碳源的条件下,各个化学指标(如挥发性脂肪酸、聚羟基脂肪酸等)的变化趋势及微生物群落多样性的变化情况。  相似文献   

19.
采用特异性移动床生物膜反应器(SMBBR)结合后置反硝化技术处理高氨氮农药废水,SMBBR选用亲水性更强的SDC-03型填料和特异性DNF409混合菌种,可以实现同步硝化反硝化脱氮。试验考察了DNF409菌种对填料挂膜的影响,不同C/N比对脱氮的影响以及对COD、氨氮、TN的去除率的影响。结果显示,当水力停留时间为8 d,进水COD质量浓度为2 408~7 440 mg/L,氨氮质量浓度为160.21~433.84 mg/L,TN质量浓度为208.27~537.65 mg/L,pH值为7.0~8.5时,AF中外加碳源C/N比值为5时,出水COD质量浓度平均为341.9 mg/L,平均去除率高达92.3%,氨氮质量浓度保持在3.0 mg/L以内,去除率在98%以上,TN质量浓度稳定在40~45 mg/L,去除率在80%以上,达到了《污水综合排放标准》(GB 8978—1996)的三级标准。  相似文献   

20.
采用特异性移动床生物膜反应器(SMBBR)结合后置反硝化技术处理高氨氮农药废水,SMBBR选用亲水性更强的SDC-03型填料和特异性DNF409混合菌种,可以实现同步硝化反硝化脱氮。试验考察了DNF409菌种对填料挂膜的影响,不同C/N比对脱氮的影响以及对COD、氨氮、TN的去除率的影响。结果显示,当水力停留时间为8 d,进水COD质量浓度为2 408~7 440 mg/L,氨氮质量浓度为160.21~433.84 mg/L,TN质量浓度为208.27~537.65 mg/L,pH值为7.0~8.5时,AF中外加碳源C/N比值为5时,出水COD质量浓度平均为341.9 mg/L,平均去除率高达92.3%,氨氮质量浓度保持在3.0 mg/L以内,去除率在98%以上,TN质量浓度稳定在40~45 mg/L,去除率在80%以上,达到了《污水综合排放标准》(GB 8978—1996)的三级标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号