首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 691 毫秒
1.
以固体废物赤泥为原料,采用酸溶-水热法制备光催化剂,并进行化学成分、紫外-可见漫反射吸收光谱(UV-Vis)等物性测试分析.通过降解甲基橙模拟废水,探讨了制备过程中渣酸比、溶剂、水热反应pH值、水热反应温度等条件对赤泥制光催化剂活性的影响.将最佳条件下制备的光催化剂用于染料废水的处理,结果表明,染料废水COD去除率达到75.23%,出水COD值仅为123.07 mg/L,达到二级排放标准.这为氧化铝厂废渣-赤泥的综合利用提供了一条新思路.  相似文献   

2.
Pt掺杂TiO2纳米粉体的制备及其光催化活性研究   总被引:3,自引:0,他引:3  
以钛酸丁酯为前驱物,醋酸为酸催化剂,采用溶胶-凝胶法制备掺有不同质量分数Pt的纳米TiO2粉体.通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等现代分析手段对所制备的不同Pt/TiO2纳米粉体的微观结构进行了表征.并以甲基橙染料的光催化降解为模型反应,考察了不同条件下所制备的光催化剂的光催化活性,探讨了纳米粉体中Pt的掺杂量对其光催化活性的影响.实验结果表明,Pt质量分数为0.2%的纳米TiO2粉体的光催化活性最好,过低或者过高的掺Pt量无法提高TiO2的光催化活性,甚至会降低TiO2的光催化活性.  相似文献   

3.
半导体钴酸镧作为传统型热电催化材料,由于价廉、高效、环境友好等特点,在国民经济中被广泛应用。结合半导体钴酸镧的最新研究成果,综合论述了钴酸镧的几种新型制备方法:微波辅助合成法(绿色、高效)、机械活化法(反应活性高)和表面离子吸收法(产物纯度高)。同时对提高钴酸镧光催化活性的措施进行分类,包括与其他半导体材料形成异质结、元素掺杂、与新型材料复合等方法。在此基础上总结了钴酸镧光催化剂在降解染料废水、抗生素废水,以及光催化产氢、高级氧化有机废水等水处理中的应用,探讨了未来的研究方向。  相似文献   

4.
锆改性纳米TiO2的光催化性能研究   总被引:1,自引:0,他引:1  
用溶胶-凝胶法制备了锆改性纳米二氧化钛光催化剂,并用XRD、UV-vis、BET等测定技术对所制得的粉体试样进行了表征.同时以甲基橙及苯酚为模拟污染物,评价了改性后纳米二氧化钛的光催化性能,发现其光催化活性大大高于未改性二氧化钛粉体,并得出当n(Zr)/n(Ti)=5/300时,锆改性纳米二氧化钛样品的光催化活性最高.  相似文献   

5.
用溶胶-凝胶法制备了锆改性纳米二氧化钛光催化剂,并用XRD、UV-vis、BET等测定技术对所制得的粉体试样进行了表征。同时以甲基橙及苯酚为模拟污染物,评价了改性后纳米二氧化钛的光催化性能,发现其光催化活性大大高于未改性二氧化钛粉体,并得出当n(Zr)/n(Ti)=5/300时,锆改性纳米二氧化钛样品的光催化活性最高。  相似文献   

6.
分析了25家钢铁企业转炉和电炉钢渣的易磨性和胶凝活性,分析结果表明,钢渣中的一些含铁物相,如橄榄石、铁酸钙类物质属于难磨物相,而RO相相对易磨,电炉氧化渣比转炉渣易磨,热闷渣比热泼渣易磨;碱度≥1.8的转炉钢渣的胶凝活性较好,能符合GB/T 20491—2006《用于水泥和混凝土中的钢渣粉》中规定的二级钢渣粉的活性指数要求,而电炉渣由于碱度偏低,胶凝活性较差。  相似文献   

7.
我国炼铁高炉炉渣,大都采用“水冲渣沟”处理,如果高炉出渣过快,或遇高炉跑大流,部分铁水进入渣沟遇水时,极易发生爆炸事故。爆炸的主要原因是由于大量高温炉渣或铁水(一般在1000℃左右)遇水时,水瞬间汽化、体积迅速膨胀而形成物理爆炸。威远钢铁厂炼铁高炉以前采用这种“水冲渣沟”处理炉渣,曾多次发生爆炸事故。有一次爆炸事故,气浪将渣沟上重1t的铁桥冲起20多米高,一块重25kg的铁块被抛出  相似文献   

8.
过渡金属掺杂ZnO纳米光催化剂对四环素的光催化降解   总被引:1,自引:0,他引:1  
利用水热合成法分别制备了Fe、Co、Ni掺杂及Fe-Co、Fe-Ni共掺杂的ZnO光催化剂.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外-可见漫反射吸收光谱(UV-Vis)等手段对催化剂进行了表征.以氙灯(250~ 800 nm)为光源,盐酸四环素为降解对象,模拟测试样品在日光下光催化降解抗生素的活性.考察了过渡金属种类、过渡金属掺杂量及二元掺杂配比对ZnO样品光催化活性的影响.结果表明,制得的样品均为六方晶系纤锌矿结构的ZnO.单一元素掺杂时,Fe掺杂提高了ZnO光催化活性,而Co、Ni掺杂都抑制了ZnO光催化活性.共掺杂时,Fe-Co/ZnO及Fe-Ni/ZnO光催化活性优于单一掺杂的Fe/ZnO,其中3%Fe-1%Ni/ZnO样品的光催化活性最好,在氙灯光源下反应120 min对盐酸四环素的降解率高达87.95%.  相似文献   

9.
为提高纳米TiO2的可见光催化活性,采用溶胶-凝胶法制备了一种掺杂型纳米可见光催化剂Co/N/S/TiO2,并用正交试验法对其制备工艺进行了优化;用紫外-可见漫反射光谱(DRS)、X射线衍射(XRD)、透射电子显微镜(TEM)等方法对其吸光性能和结构进行了表征;以活性艳蓝X-BR溶液为光降解模型,对其可见光催化活性进行了评价,并与Degussa P25进行对比.结果表明,在Co:N:S:Ti物质的量比为0.15:0.2:0.2:1、煅烧温度为400℃、煅烧时间为1h的最佳制备条件下,所制得的Co/N/S/TiO2光催化剂为单一锐钛矿晶相,平均粒径为8~ 10 nm,比表面积约为192.19 m2/g.Co/N/S/TiO2光催化剂吸收边可红移至近900 nm,可见光催化活性突出,在纯粹可见光(λ>400 nm)下光解活性艳蓝X-BR溶液120 min的降解率可达91.5%,与Degussa P25相比,其可见光催化活性提高了80.1%,且重复使用性能良好.  相似文献   

10.
以油页岩灰渣为原料,采用酸法制备聚合氯化铝,考察了酸溶条件对产品的铝浸出率与盐基度的影响。制备聚合氯化铝的最佳酸溶条件为:酸的质量分数22%,酸量比n(Al2O3)/n(HCl)为1∶13,酸溶温度125℃,酸溶时间3 h。此条件下,铝浸出率为73.65%,制备的液体聚合氯化铝的盐基度为77.51%。所制聚合氯化铝符合国家标准(GB 15892—2003)中Ⅰ类液体一等品标准。  相似文献   

11.
采用一步水热合成法制备不同掺杂量的Sm~(3+)-BiPO_4光催化剂。用XRD,EDS,SEM和DRS手段对光催化剂的特性进行表征。以亚甲基蓝为目标污染物,考察了Sm~(3+)-BiPO_4的光催化活性。结果表明,适量的钐掺杂使BiPO_4光催化活性提高了30%。当钐掺杂量为5%时,紫外光照射90 min,亚甲基蓝的降解率可达86.1%。  相似文献   

12.
二氧化钛/累托石制备及其光催化性能研究   总被引:3,自引:0,他引:3  
以累托石和四氯化钛为原料制备了二氧化钛/累托石复合材料,考察了各种制备条件如灼烧温度、复合反应温度、HCI/TiCl4等对光催化性能的影响。X射线衍射及红外光谱对材料的分析表明,反应中发生了聚合钛离子与累托石中阳离子的交换反应。酸性红B水溶液的脱色效率的结果表明,不同实验条件对复合材料的光催化性能都有不同程度的影响。初步探讨了影响光催化性能的机理及材料制备的最佳条件。  相似文献   

13.
为更好地处理色度高,有机污染物浓度大,可生化性差的染料废水,采用自制的Ag_x/Zn_((1-x))BiVO_4为光催化剂,氙灯为光源,研究了催化剂Ag_x/Zn_((1-x))BiVO_4对可溶性染料罗丹明B废水的光催化降解情况.试验考察了Ag与Zn的不同配比、催化剂用量、溶液的pH值和光照时间等对罗丹明B光催化降解过程的影响,并对反应动力学做了初步探讨.结果表明,模拟太阳光照射下,罗丹明B质量浓度为5 mg/L、催化剂(Ag_x/Zn_((1-x))BiVO_4)用量为1 g/L、pH值为2.0、反应时间为30 min条件下,罗丹明B的脱色率达99.7%.与P_(25)-TiO_2催化剂对罗丹明B废水的降解情况进行了比较研究,表明Ag_(0.6)/Zn_(0.4)BiVO_4具有较好的光催化活性,可用于染料类废水的处理.动力学拟合结果表明,该光催化反应近似为一级动力学,其动力学方程为y=-3.06353-0.02146x.  相似文献   

14.
以溶胶-凝胶法、液相沉淀法和机械混合法制备了Cu-Fe双金属掺杂的TiO2/膨润土复合光催化剂,采用XRD、FTIR对其进行了结构表征,以紫外光和可见光催化降解直接天蓝染料废水为模型,考察了制备方法对催化剂光催化性能的影响。结果表明:各催化剂中均有锐钛矿型TiO2生成,且部分TiO2进入了膨润土的蒙脱石层间,改变了其层间的有序性,生成了Ti—O—Si键,实现了TiO2粒子与膨润土的复合。溶胶-凝胶法制备的催化剂中TiO2与膨润土的复合程度最高,Cu2+和Fe3+成功掺入了TiO2晶格,形成了复合半导体,拓宽了TiO2的光谱响应范围,使该催化剂表现出最优的光催化活性,并且该催化剂性能稳定,易于沉降分离,经高温活化再生后仍具有良好的催化活性,可重复多次使用,表现出良好的再生性能。  相似文献   

15.
用微乳法和熔盐法结合制备出了Na2Ti6O13纳米带,并用XRD,SEM对其进行表征;研究了Na2Ti6O13在紫外光下对偶氮染料活性艳橙(X-GN)的降解,并探讨了pH值、催化剂投加量和外加H2O2氧化剂对光催化效率的影响。实验表明,Na2Ti6O13具有很好的光催化性能,30W紫外灯下光催化60min对25mg/LX-GN的降解率最高可达94.1%;反应液pH值过高或过低会影响催化剂活性,最佳pH值为5.7;一定范围内,光催化效率随催化剂投加量的增加而提高,但投加量大于1.0 g/L时,催化效率反而下降;适当投加H2O2能显著提高降解效果。  相似文献   

16.
以对硝基苯酚溶液为模拟废水,用自制的"Cu核-Cu2O壳"粒子对其进行光催化氧化试验,考察了光照时间、催化剂用量、对硝基苯酚的初始质量浓度、溶液的pH值和光源等对降解过程的影响。结果表明,对硝基苯酚溶液质量浓度为40 mg.L-1,催化剂投加量为2g.L-1,光照120min后降解率达到95%,降解反应符合一级反应动力学。与其他同类光催化剂相比,"Cu核-Cu2O壳"粒子具有较高的光催化活性,而且光催化过程中有氢氧自由基产生,对对硝基苯酚的降解较彻底。  相似文献   

17.
以醋酸锌和硝酸镧为原料,丙烯酰胺为单体,N,N’-亚甲基双丙烯酰胺为网络剂,过硫酸铵为引发剂,采用高分子网络凝胶法制备得到掺镧的Zn O纳米粉体。用制备的粉体对甲基橙进行光催化降解实验,考察了掺镧量对其光催化性能的影响。用X射线衍射仪、高分辨率透射电镜、X射线能谱仪、比表面积与孔隙率分析仪等对其进行表征。结果表明,镧的掺入提高了Zn O的光催化活性,镧锌摩尔质量比为0.2%时光催化性能最好,高压汞灯下反应1 h,甲基橙的脱色率为96.5%,相比于未掺杂的Zn O提高了11.5%。  相似文献   

18.
Innovative simple method for the preparation of simonkolleite-TiO2 photocatalyst with different Zn contents was achieved. The prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, Raman and diffuse reflectance spectroscopy techniques. The photocatalytic activities of the materials were evaluated for the simultaneous detoxification of hexavalent chromium (Cr(VI)) and oxidation of organic compounds commonly present in wastewater under simulated solar light. The best photoreduction efficiency of Cr(VI) has been achieved at 1000 ppm simonkolleite-TiO2 photocatalyst of 5% Zn/TiO2 weight ratio, and pH value of 2.5 to enhance the adsorption onto catalyst surface. Photoreduction was significantly improved by using formic acid as holes scavenger owing to its chemical adsorption on the catalyst surface. Finally, 100% photoreduction of Cr(VI) could be achieved using formic/simonkolleite-TiO2 systems under sunlight.  相似文献   

19.
采用微波辐射法制备TiO2/活性炭(TiO2/AC)复合光催化剂,并利用该催化剂对橙黄Ⅱ进行光催化降解。考察了乙醇与钛酸丁酯(TNB)的体积比,水、乙酸和活性炭的加入量,微波功率,微波辐射时间,煅烧温度等因素对TiO2/AC催化活性的影响,确定了制备TiO2/AC的最佳工艺条件以及TiO2/AC光催化降解橙黄Ⅱ的工艺条件。结果表明,制备TiO2/AC的最佳工艺条件为:乙醇与钛酸丁酯(TNB)体积比为8∶1(即乙醇24 mL,钛酸丁酯3 mL),水、乙酸和活性炭的加入量分别为0.8mL、0.6 mL和2 g,微波功率500 W,微波辐射时间1 min,煅烧温度500℃,煅烧时间为2 h。在TiO2/AC用量为0.3 g、反应时间为1 h、pH为3的条件下,25 mg/L橙黄Ⅱ溶液的降解率达95%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号