首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Mixing an inert solid or a less flammable compound with a combustible dust can be regarded as a direct application of the inherent safety principle of moderation. An experimental investigation was carried out to determine the evolution of the ignition sensitivity and the explosion severity of such various mixtures as a function of their compositions. It demonstrates that the introduction of small amounts of highly combustible powders (such as sulphur or nicotinic acid) to a less flammable dust (such as microcrystalline cellulose or carbon black) can strongly influence the ignition sensitivity as well as the explosion severity.It has notably been shown that the ignition sensitivity of solid/solid mixtures significantly rises up when only 10–5%wt. of highly flammable dust is introduced. Simple models can often be applied to estimate the minimum ignition energy, minimum ignition temperature and minimum explosive concentration of such mixtures. Concerning the dust explosivity, three cases have been studied: mixtures of combustibles dusts without reaction, dusts with reactions between the powders, combustible dusts with inert solid. If the evolution of the maximum explosion pressure can be estimated by using thermodynamic calculations, the maximum rate of pressure rise is more difficult to predict with simple models, and both combustion kinetics and hydrodynamics of the dust clouds should be taken into account. These results were also extended to flammable dust/solid inertant mixture. They clearly show that the concentration of solid inertant at which the ignition is not observed anymore could reach 95%wt. As a consequence, the common recommendation of solid inertant introduction up to 50–80%wt. to prevent dust explosion/ignition should be reconsidered.  相似文献   

2.
An experimental program has been undertaken to investigate the explosibility of selected organic dusts. The work is part of a larger research project aimed at examination of a category of combustible dusts known as marginally explosible. These are materials that appear to explode in laboratory-scale test chambers, but which may not produce appreciable overpressures and rates of pressure rise in intermediate-scale chambers. Recent work by other researchers has also demonstrated that for some materials, the reverse occurs – i.e., values of explosion parameters are higher in a 1-m3 chamber than one with a volume of 20 L. Uncertainties can therefore arise in the design of dust explosion risk reduction measures.The following materials were tested in the current work: niacin, lycopodium and polyethylene, all of which are well-known to be combustible and which cover a relatively wide range of explosion consequence severity. The concept of marginal explosibility was incorporated by testing both fine and coarse fractions of polyethylene. Experiments were conducted at Dalhousie University using the following equipment: (i) Siwek 20-L explosion chamber for determination of maximum explosion pressure (Pmax), volume-normalized maximum rate of pressure rise (KSt), and minimum explosible concentration (MEC), (ii) MIKE 3 apparatus for determination of minimum ignition energy (MIE), and (iii) BAM oven for determination of minimum ignition temperature (MIT). Testing was also conducted at Fauske & Associates, LLC using a 1-m3 explosion chamber for determination of Pmax, KSt and MEC. All equipment were calibrated against reference dusts, and relevant ASTM methodologies were followed in all tests.The explosion data followed known trends in accordance with relevant physical and chemical phenomena. For example, Pmax and KSt values for the fine sample of polyethylene were higher than those for the coarse sample because of the decrease in particle size. MEC values for all samples were comparable in both the 20-L and 1-m3 chambers. Pmax and KSt values compared favorably in the different size vessels except for the coarse polyethylene sample. In this case, KSt determined in a volume of 1 m3 was significantly higher than the value from 20-L testing. The fact that the 20-L KSt was low (23 bar m/s) does not indicate marginal explosibility of the coarse polyethylene. This sample is clearly explosible as evidenced by the measured values of MEC, MIE, MIT, and 1-m3 KSt (at both 550 and 600 ms ignition delay times).  相似文献   

3.
To evaluate the explosion hazard of ITER-relevant dusts, a standard method of 20-l-sphere was used to measure the explosion indices of fine graphite and tungsten dusts and their mixtures. The effect of dust particle size was studied on the maximum overpressures, maximum rates of pressure rise, and lower explosive concentrations of graphite dusts in the range 4 μm to 45 μm. The explosion indices of 1 μm tungsten dust and its mixtures with 4 μm graphite dust were measured. The explosibility of these dusts and mixtures were evaluated. The dusts tested were ranked as St1 class. Dust particle size was shown to be very important for explosion properties. The finest graphite dust appeared to have the lowest minimum explosion concentration and be able to explode with 2 kJ ignition energy.  相似文献   

4.
In the work presented in this paper, the explosion and flammability behavior of combustible dust mixtures was studied. Lycopodium, Nicotinic acid and Ascorbic acid were used as sample dusts.In the case of mixtures of two dusts, the minimum explosive concentration is reproduced well by a Le Chatelier's rule-like formula, whereas the minimum ignition energy is a linear combination of the ignition energies of the pure dusts.An unexpected behavior has been found in relation to the explosion behavior and the reactivity. When mixing Lycopodium and Nicotinic acid or Ascorbic acid, the rate of pressure rise of the mixture is much higher than the rate of pressure rise obtained by linearly averaging the values of the pure dusts (according to their weight proportions), thus suggesting that strong synergistic effects arise; but it is comparable to that of the most reactive dust in the mixture.The observed behavior seems to be linked to the presence of minerals in the Lycopodium particles which catalyze oxidation reactions of Nicotinic acid and Ascorbic acid, as suggested by TG analysis.In the case of mixtures of three dusts, a similar behavior is observed when the concentration of Lycopodium is twice that of the other two dusts.  相似文献   

5.
Most industrial powder processes handle mixtures of various flammable powders. Consequently, hazard evaluation leads to a reduction of the disaster damage that arises from dust explosions. Determining the minimum ignition energy (MIE) of flammable mixtures is critical for identifying possibility of accidental hazard in industry. The aim of this work is to measure the critical ignition energy of different kinds of pure dusts with various particle sizes as well as mixtures thereof.The results show that even the addition of a modest amount of a highly flammable powder to a less combustible powder has a significant impact on the MIE. The MIE varies considerably when the fraction of the highly flammable powder exceeds 20%. For dust mixtures consisting of combustible dusts, the relationship between the ignition energy of the mixture and the minimum ignition energy of the components follows the so-called harmonic model based upon the volume fraction of the pure dusts in the mixture. This correlation provides results which show satisfactory agreement with the experimental values.  相似文献   

6.
The explosion behaviour of heterogeneous/homogeneous fuel-air (hybrid) mixtures is here analysed and compared to the explosion features of heterogeneous fuel-air and homogeneous fuel-air mixtures separately.Experiments are performed to measure the pressure history, deflagration index and flammability limits of nicotinic acid/acetone-air mixtures in a standard 20 L Siwek bomb adapted to vapour-air mixtures. Literature data are also used for comparison.The explosion tests performed on gas-air mixtures in the same conditions as explosion tests of dust-air mixtures, show that the increase in explosion severity of dust/gas-air mixtures has to be addressed to the role of initial level of turbulence prior to ignition.At a fixed value of the equivalence ratio, by substituting the dust to the flammable gas in a dust/gas-air mixture the explosion severity decreases. Furthermore, the most severe conditions of dust-gas/air mixtures is found during explosion of gas-air mixture at stoichiometric concentration.  相似文献   

7.
The explosion characteristic parameters of polyethylene dust were systematically investigated. The variations in the maximum explosion pressure (Pmax), explosion index (Kst), minimum ignition energy (MIE), minimum ignition temperature (MIT), and minimum explosion concentration (MEC) of dust samples with different particle sizes were obtained. Using experimental data, a two-dimensional matrix analysis method was applied to classify the dust explosion severity based on Pmax and Kst. Then, a three-dimensional matrix was used to categorize the dust explosion sensitivity based on three factors: MIE, MIT, and MEC. Finally, a two-dimensional matrix model of dust explosion risk assessment was established considering the severity and sensitivity. The model was used to evaluate the explosion risk of polyethylene dust samples with different particle sizes. It was found that the risk level of dust explosion increased with decreasing particle size, which was consistent with the actual results. The risk assessment method can provide a scientific basis for dust explosion prevention in the production of polyethylene.  相似文献   

8.
The current research is aimed at investigating the explosion behavior of hazardous materials in relation to aspects of particulate size. The materials of study are flocculent (fibrous) polyamide 6.6 (nylon) and polyester (polyethylene terephthalate). These materials may be termed nontraditional dusts due to their cylindrical shape which necessitates consideration of both particle diameter and length. The experimental work undertaken is divided into two main parts. The first deals with the determination of deflagration parameters for polyamide 6.6 (dtex 3.3) for different lengths: 0.3 mm, 0.5 mm, 0.75 mm, 0.9 mm and 1 mm; the second involves a study of the deflagration behavior of polyester and polyamide 6.6 samples, each having a length of 0.5 mm and two different values of dtex, namely 1.7 and 3.3. (Dtex or decitex is a unit of measure for the linear density of fibers. It is equivalent to the mass in grams per 10,000 m of a single filament, and can be converted to a particle diameter.) The explosibility parameters investigated for both flocculent materials include maximum explosion pressure (Pmax), size-normalized maximum rate of pressure rise (KSt), minimum explosible concentration (MEC), minimum ignition energy (MIE) and minimum ignition temperature (MIT). ASTM protocols were followed using standard dust explosibility test equipment (Siwek 20-L explosion chamber, MIKE 3 apparatus and BAM oven). Both qualitative and quantitative analyses were undertaken as indicated by the following examples. Qualitative observation of the post-explosion residue for polyamide 6.6 indicated a complex interwoven structure, whereas the polyester residue showed a shiny, melt-type appearance. Quantitatively, the highest values of Pmax and KSt were obtained at the shortest length and finest dtex for a given material. For a given length, polyester displayed a greater difference in Pmax and KSt at different values of dtex than polyamide 6.6. Long ignition delay times were observed in the BAM oven (MIT measurements) for polyester, and video framing of explosions in the MIKE 3 apparatus (MIE measurements) enabled observation of secondary ignitions caused by flame propagation after the initial ignition occurring at the spark electrodes.  相似文献   

9.
This paper reports the results of experiments done to examine the explosibility of pulverized fuel dusts (two different coals and petroleum coke) and their waste products (bottom and fly ashes). Tests were conducted for the fuel dusts alone and also blended with other fuels and ashes. The explosion parameters of interest were maximum pressure and rate of pressure rise, and ignition energy and temperature. Petroleum coke was found to present a lesser explosion hazard than the coals. Admixture of either coal or petroleum coke with fly ash resulted in explosible mixtures at volatile contents dependent on the composition of the mixture components and their particle sizes.  相似文献   

10.
Explosions of hybrid mixtures, i.e. mixtures containing more than one combustible phase, are not well understood. Most studies in this area involve mixtures of common dusts and gases, such as coal and methane, or polyethylene and ethylene. The present work focuses on explosions of carbon black particles, i.e. almost pure carbon with a very low content of volatiles: this makes the process of explosion less intense. However, addition of some quantities of combustible gases (here: propane) may sustain combustion processes. Another important issue is the fact that the carbon black particles are smaller in size than most dusts encountered in the process industry. The experiments were carried out in a 20-L explosion vessel and the analysis of the results focuses on the maximum explosion pressures and the maximum rates of pressure rise as a function of carbon black and propane concentrations. In addition, some samples of unburnt dust were collected and analysed with a scanning electron microscope and with thermo-gravimetric analysis.  相似文献   

11.
为了将本质安全原理中的缓和原则与粉尘爆炸事故的风险控制联系起来,利用Swiek20 L球形爆炸装置考察了烟煤粉、甘薯粉和镁粉的最大爆炸压力、最大爆压上升速率和爆炸下限等特性,重点考察了点火能量、环境压力以及添加惰化剂等因素的影响。结果表明:降低点火能量能有效缩减粉尘可燃浓度范围,提高粉尘爆炸下限;爆炸危害正相关于环境压力;碳酸钙和碳酸氢钠能有效抑制烟煤尘爆炸,且碳酸钙抑爆效果更好;氯化钾对镁尘爆炸动力学特性的抑制效果更好,而碳酸钙对镁尘爆炸热力学特性的抑制效果更好,且小粒径的惰化剂表现出更好的抑爆炸能力。降低点火能量、控制环境压力和添加惰化剂均可降低粉尘爆炸危害,有助于控制粉尘爆炸风险。  相似文献   

12.
Explosibility of polyurethane dusts produced in the recycling process of refrigerator and the ways to prevent the dust explosion were studied. In recent years, cyclopentane is often used as the foaming agent and this produces explosive atmosphere in the shredding process. The minimum explosive concentration of polyurethane dust, influence of coexisting cyclopentane gas on the explosibility, effect of relative humidity on the minimum explosive concentration of polyurethane dusts, the minimum ignition energy, influence of cyclopentane mixture on the explosion severity, etc. were investigated.The minimum explosive dust concentration decreased with the increase of cyclopentane concentration and increased with the increase of relative humidity. The minimum ignition energy was about 11 mJ. The ignition energy decreased with the increase of the cyclopentane gas concentration. The cyclopentane gas concentration up to about 5300 ppm did not influence too much on the explosion index (Kst) and maximum explosion pressure. From these, it would be a good way to increase the relative humidity and to regulate the cyclopentane concentration in the shredding process to prevent the dust explosion hazard.  相似文献   

13.
Powdered materials are widely used in industrial processes, chemical processing, and nanoscience. Because most flammable powders and chemicals are not pure substances, their flammability and self-heating characteristics cannot be accurately identified using safety data sheets. Therefore, site staff can easily underestimate the risks they pose. Flammable dust accidents are frequent and force industrial process managers to pay attention to the characteristics of flammable powders and create inherently safer designs.This study verified that although the flammable powders used by petrochemical plants have been tested, some powders have different minimum ignition energies (MIEs) before and after drying, whereas some of the powders are released of flammable gases. These hazard characteristics are usually neglected, leading to the neglect of preventive parameters for fires and explosions, such as dust particle size specified by NFPA-654, MIE, the minimum ignition temperature of the dust cloud, the minimum ignition temperature of the dust layer, and limiting oxygen concentration. Unless these parameters are fully integrated into process hazard analysis and process safety management, the risks cannot be fully identified, and the reliability of process hazard analysis cannot be improved to facilitate the development of appropriate countermeasures. Preventing the underestimation of process risk severity due to the fire and explosion parameters of unknown flammable dusts and overestimation of existing safety measures is crucial for effective accident prevention.  相似文献   

14.
With the terms “complex hybrid mixtures”, we mean mixtures made of two or more combustible dusts mixed with flammable gas or vapors in air (or another comburent).In this work, the flammability and explosion behavior of selected complex hybrid mixtures was studied. In particular, we investigated mixtures of nicotinic acid, lycopodium and methane. We performed explosion tests in the 20-L explosion vessel at different overall (nicotinic plus lycopodium) dust concentrations, nicotinic acid/lycopodium ratios, and methane concentrations.An exceptional behavior (in terms of unexpected values of rate of pressure rise and pressure) was found for the complex hybrid mixtures containing lycopodium and nicotinic acid in equal amounts. This mixture was found to be much more reactive than all the other dust mixtures, whatever the dust concentration and the methane content.  相似文献   

15.
This paper presents the explosion parameters of corn dust/air mixtures in confined chamber. The measurements were conducted in a setup which comprises a 5 L explosion chamber, a dust dispersion sub-system, and a transient pressure measurement sub-system. The influences of the ignition delay on the pressure and the rate of pressure rise for the dust/air explosion have been discussed based on the experimental data. It is found that at the lower concentrations, the explosion pressure and the rate of pressure rise of corn dust/air mixtures decrease as the ignition delay increases from 60 ms; But at the higher concentrations, the explosion pressure and the rate of pressure rise increase slightly as the ignition delay increases from 60 ms to 80 ms, and decrease beyond 80 ms. The maximum explosion pressure of corn dust/air mixtures reaches its highest value equal to 0.79 MPa at the concentration of 1000 gm−3.  相似文献   

16.
This paper discusses the results of an experimental program carried out to determine dust cloud deflagration parameters of selected solid-state hydrogen storage materials, including complex metal hydrides (sodium alanate and lithium borohydride/magnesium hydride mixture), chemical hydrides (alane and ammonia borane) and activated carbon (Maxsorb, AX-21). The measured parameters include maximum deflagration pressure rise, maximum rate of pressure rise, minimum ignition temperature, minimum ignition energy and minimum explosible concentration. The calculated explosion indexes include volume-normalized maximum rate of pressure rise (KSt), explosion severity (ES) and ignition sensitivity (IS). The deflagration parameters of Pittsburgh seam coal dust and Lycopodium spores (reference materials) are also measured. The results show that activated carbon is the safest hydrogen storage media among the examined materials. Ammonia borane is unsafe to use because of the high explosibility of its dust. The core insights of this contribution are useful for quantifying the risks associated with use of these materials for on-board systems in light-duty fuel cell-powered vehicles and for supporting the development of hydrogen safety codes and standards. These insights are also critical for designing adequate safety features such as explosion relief venting and isolation devices and for supplementing missing data in materials safety data sheets.  相似文献   

17.
In order to study the influences of coal dust components on the explosibility of hybrid mixture of methane and coal dust, four kinds of coal dust with different components were selected in this study. Using the standard 20 L sphere, the maximum explosion pressure, explosion index and lower explosion limits of methane/coal dust mixtures were measured. The results show that the addition of methane to different kinds of coal dust can all clearly increase their maximum explosion pressure and explosion index and decrease their minimum explosion concentration. However, the increase in the maximum explosion pressure and explosion index is more significant for coal dust with lower volatile content, while the decrease in the minimum explosion concentration is more significant for coal dust with higher volatile content. It is concluded that the influence of methane on the explosion severity is more pronounced for coal dust with lower volatile content, but on ignition sensitivity it is more pronounced for coal dust with higher volatile content. Bartknecht model for predicting the lower explosion limits of methane/coal dust mixture has better applicability than Le Chatelier model and Jiang model. Especially, it is more suitable for hybrid mixtures of methane and high volatile coal dust.  相似文献   

18.
点火延迟时间对粉尘最大爆炸压力测定影响的研究   总被引:5,自引:3,他引:2  
根据粉尘云形成时颗粒分散及沉降的时间效应,指出目前国际通行的球型爆炸装置采用固定点火延迟时间测定粉尘最大爆炸压力的方法具有不确定性,并以煤粉为介质在20 L标准爆炸球装置上进行系列爆炸实验,研究装置点火延迟时间对粉尘爆炸压力的影响。结果表明:点火延迟时间对粉尘爆炸压力测定有十分显著的影响,不同粒径粉尘的最大爆炸压力有不同点火延迟时间,目前仅以气相湍流度所确定的固定点火延迟时间下,所测粉尘最大爆炸压力可能严重偏离实际。  相似文献   

19.
An investigation into the limiting oxygen concentration (LOC) of fifteen combustible dusts and methane, ethanol and isopropanol hybrid mixtures in the standard 20 L explosion chamber was performed. Three ignition energies (10 J, 2 kJ and 10 kJ) were used. The results show that a 10 J electrical spark ignition leads to significantly higher limiting oxygen concentration values than either 2 kJ or 10 kJ pyrotechnic igniters. This could be due to the “overdriving” effect of the chemical igniters, which produce a hot flame that virtually covers the entire explosion chamber during combustion. With respect to hybrid mixture investigation, the 20 L sphere was modified to allow the input of methane gas and flammable solvents. The limiting oxygen concentrations of the hybrid mixtures were found to be considerably lower than those of dust air mixtures when the relatively weaker spark igniter was used. There was no significant change in limiting oxygen concentration when the higher energy chemical igniters were used.  相似文献   

20.
For the development of a standardized method for measuring the explosion safety characteristics of combustible hybrid dust/vapor mixtures, the influence of the ignition delay time needs to be investigated. The ignition delay time, defined as the time between the injection of dust and the activation of the ignition source, is related to the turbulence of the mixture and thus to the pressure rise rate. The ignition source for pure vapors, however, has to be activated in a quiescent atmosphere according to the standards. Nevertheless, when measuring the explosion safety characteristics of hybrid mixtures, it is important that the dust be in suspension around the igniter. Like pure dust/air mixtures, hybrid dust/vapor/air mixtures need to be ignited in a turbulent atmosphere to keep the dust in suspension.This work will therefore investigate the influence of ignition delay times on the severity of hybrid explosions. It was generally found that at shorter ignition delay times, (dp/dt)ex increased due to higher turbulence and decreases as the dust sinks to the bottom of the 20 L-sphere. This effect is more pronounced for hybrid mixtures with higher vapor content compared to dust content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号