首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mixing an inert solid or a less flammable compound with a combustible dust can be regarded as a direct application of the inherent safety principle of moderation. An experimental investigation was carried out to determine the evolution of the ignition sensitivity and the explosion severity of such various mixtures as a function of their compositions. It demonstrates that the introduction of small amounts of highly combustible powders (such as sulphur or nicotinic acid) to a less flammable dust (such as microcrystalline cellulose or carbon black) can strongly influence the ignition sensitivity as well as the explosion severity.It has notably been shown that the ignition sensitivity of solid/solid mixtures significantly rises up when only 10–5%wt. of highly flammable dust is introduced. Simple models can often be applied to estimate the minimum ignition energy, minimum ignition temperature and minimum explosive concentration of such mixtures. Concerning the dust explosivity, three cases have been studied: mixtures of combustibles dusts without reaction, dusts with reactions between the powders, combustible dusts with inert solid. If the evolution of the maximum explosion pressure can be estimated by using thermodynamic calculations, the maximum rate of pressure rise is more difficult to predict with simple models, and both combustion kinetics and hydrodynamics of the dust clouds should be taken into account. These results were also extended to flammable dust/solid inertant mixture. They clearly show that the concentration of solid inertant at which the ignition is not observed anymore could reach 95%wt. As a consequence, the common recommendation of solid inertant introduction up to 50–80%wt. to prevent dust explosion/ignition should be reconsidered.  相似文献   

2.
气体、粉尘爆炸灾害及其安全技术   总被引:9,自引:14,他引:9  
对可燃性气体、蒸汽、粉尘的爆炸特性及其抑爆、隔爆安全技术进行了系统的研究 ,并对常见的可燃性气体、蒸汽和粉尘的各种爆炸特性参数和气体抑爆安全技术参数进行了实验测定。根据实验测定结果得到的结论对这种可燃性物质的安全应用具有重要的参考价值  相似文献   

3.
The hybrid mixture of combustible dusts and flammable gases/vapours widely exist in various industries, including mining, petrochemical, metallurgical, textile and pharmaceutical. It may pose a higher explosion risk than gas/vapor or dust/mist explosions since the hybrid explosions can still be initiated even though both the gas and the dust concentration are lower than their lower explosion limit (LEL) values. Understanding the explosion threat of hybrid mixtures not only contributes to the inherent safety and sustainability of industrial process design, but promotes the efficiency of loss prevention and mitigation. To date, however, there is no test standard with reliable explosion criteria available to determine the safety parameters of all types of hybrid mixture explosions, nor the flame propagation and quenching mechanism or theoretical explanation behind these parameters. This review presents a state-of-the-art overview of the comprehensive understanding of hybrid mixture explosions mainly in an experimental study level; thereby, the main limitations and challenges to be faced are explored. The discussed main contents include the experimental measurement for the safety parameters of hybrid mixtures (i.e., explosion sensitivity and severity parameters) via typical test apparatuses, explosion regime and criterion of hybrid mixtures, the detailed flame propagation/quenching characteristics behind the explosion severities/sensitivities of hybrid mixtures. This work aims to summarize the essential basics of experimental studies, and to provide the perspectives based on the current research gaps to understand the explosion hazards of hybrid mixtures in-depth.  相似文献   

4.
Over recent years, the idea has emerged within the IEC (International Electrotechnical Commission), as well as within the standardisation system of the European Union, that it may be beneficial to harmonise design concepts for electrical equipment for areas containing combustible dusts, with those for areas containing combustible gases and vapours. The harmonisation idea has been encouraged by the European Union “ATEX 100a” Directive, which suffers from insufficient differentiation between combustible dusts, combustible mists, and combustible gases/vapours. This deficiency probably originates from focusing on the extensive similarity of combustible dust clouds, mist clouds and gas/vapour clouds when it comes to ignition and burning properties. However, these similarities are of little significance unless there is an explosible cloud in the first place. And this is where dusts, mists and gases/vapours differ substantially, as discussed in detail in the present paper. It is suggested, therefore, that the idea of extensive harmonisation of design concepts for dusts with those established for gases/vapours be put aside (e.g. IEC Committee draft standards for “Ex i” and “Ex p” for dusts, as well as a proposal for a new “Ex m” dust standard). Instead, the safe design of electrical equipment for areas containing combustible dusts should mainly be based on two simple concepts, use of enclosures that keep the dust out to the required extent, and measures that keep the temperature of any surface in contact with dust clouds or layers sufficiently low to effectively prevent ignition. This is in full accordance with the current philosophy in European standardisation as expressed clearly in EN 50281-1-1 and -2: “The ignition protection is based on the limitation of the maximum surface temperature of the enclosure, and on the restriction of dust ingress into the enclosure by the use of “dust tight” or “dust protected” enclosures”. The same philosophy has been prevailing in USA for quite some time. It is indeed to be hoped that Europe will also maintain this sensible approach, and revise the “ATEX 100a” directive accordingly.  相似文献   

5.
In the work presented in this paper, the explosion and flammability behavior of combustible dust mixtures was studied. Lycopodium, Nicotinic acid and Ascorbic acid were used as sample dusts.In the case of mixtures of two dusts, the minimum explosive concentration is reproduced well by a Le Chatelier's rule-like formula, whereas the minimum ignition energy is a linear combination of the ignition energies of the pure dusts.An unexpected behavior has been found in relation to the explosion behavior and the reactivity. When mixing Lycopodium and Nicotinic acid or Ascorbic acid, the rate of pressure rise of the mixture is much higher than the rate of pressure rise obtained by linearly averaging the values of the pure dusts (according to their weight proportions), thus suggesting that strong synergistic effects arise; but it is comparable to that of the most reactive dust in the mixture.The observed behavior seems to be linked to the presence of minerals in the Lycopodium particles which catalyze oxidation reactions of Nicotinic acid and Ascorbic acid, as suggested by TG analysis.In the case of mixtures of three dusts, a similar behavior is observed when the concentration of Lycopodium is twice that of the other two dusts.  相似文献   

6.
The research presented in this paper is focused on dust explosions of coarse and fine flocculent (or fibrous) samples of wood and polyethylene. Hybrid mixtures of fibrous polyethylene and admixed ethylene were also studied. Experimentation was conducted by following standardized test procedures and using standardized apparatus for determination of maximum explosion pressure, size-normalized maximum rate of pressure rise, minimum explosible concentration, minimum ignition energy, and minimum ignition temperature. A general trend was observed of enhanced explosion likelihood and consequence severity with a decrease in material diameter, as well as enhanced consequence severity with admixture of a flammable gas to the combustion atmosphere. The same phenomena are well-established for dusts composed of spherical particles; this highlights the importance of inherently safer design and the principle of moderation in avoiding the generation of fine sizes of flocculent dusts and hybrid mixtures of such materials with flammable gases.In addition to presenting experimental findings, the paper describes phenomenological modelling efforts for the flocculent polyethylene using four geometric equivalence models: radial equivalence, volumetric equivalence, surface area equivalence, and specific surface area equivalence. The surface area equivalence model was found to yield the best estimates of maximum rate of pressure rise for the flocculent polyethylene samples investigated experimentally.  相似文献   

7.
从研究与应用的角度,提出了可燃物爆炸的敏感度指数的概念。探讨了这一概念在爆炸预防工作中的应用。  相似文献   

8.
准确地预测可燃混合气体的爆炸极限,对防止工业生产中时有发生的混合气体爆炸事故有着重大的意义。通过采用Gaseq软件计算CH4,C3H8,C2H4,C3H6,CH3OCH3和CO的绝热火焰温度(CAFT),分析初始温度对甲烷和丙烷混合气体(体积比1∶1)爆炸下限(LEL)的影响。结果表明:随着初始温度的升高,临界火焰温度基本不变,而LEL线性下降。使用计算绝热火焰温度法对不同比例的二元混合气体(体积比1∶1,3∶1,1∶3)以及三元混合气体(体积比1∶1∶1)的LEL进行预测,在选取的35组不同组份的混合气体中,LEL的预测值与文献值的平均绝对误差为0.081 8,平均相对误差为0.02。  相似文献   

9.
The explosion characteristics of propane–diluent–air mixtures under various temperatures and pressures were investigated using a 20-L apparatus. The explosion limits of propane diluted with nitrogen or carbon dioxide were measured at high temperatures from 25 to 120 °C. The results showed that the upper explosion limit (UEL) increased, and the lower explosion limit (LEL) decreased with the rising temperature. The explosion limits of propane diluted with nitrogen or carbon dioxide were also measured at high pressures from 0.10 to 0.16 MPa. The results showed that the UEL increased, and the LEL almost remainedunchanged along with increased pressure. Under the same initial operating conditions, the concentration of nitrogen required to reach the minimum inerting concentration (MIC) point was higher than the concentration of carbon dioxide. Finally, the study investigated the limiting oxygen concentration (LOC) of propane under various initial temperatures, initial pressures, and inert gases. The LOC of propane decreased approximately linearly with increased temperature or pressure, and the LOC of propane dilution with carbon dioxide was greater than dilution with nitrogen from 25 to 120 °C or from 0.10 to 0.16 MPa, which indicated that the dilution effect of carbon dioxide was better than that of nitrogen.  相似文献   

10.
To evaluate the explosion hazard of ITER-relevant dusts, a standard method of 20-l-sphere was used to measure the explosion indices of fine graphite and tungsten dusts and their mixtures. The effect of dust particle size was studied on the maximum overpressures, maximum rates of pressure rise, and lower explosive concentrations of graphite dusts in the range 4 μm to 45 μm. The explosion indices of 1 μm tungsten dust and its mixtures with 4 μm graphite dust were measured. The explosibility of these dusts and mixtures were evaluated. The dusts tested were ranked as St1 class. Dust particle size was shown to be very important for explosion properties. The finest graphite dust appeared to have the lowest minimum explosion concentration and be able to explode with 2 kJ ignition energy.  相似文献   

11.
为准确掌握和预测多元可燃气体的爆炸极限,开展2种多元可燃气体爆炸极限的理论预测模型研究。第1种模型针对“多种可燃气体+多种惰性气体”在空气中或氧气中混合,基于求解可燃气体绝热火焰温度的总比热特性方法以及化学平衡反应中的贫燃料(富氧)反应,提出该多元可燃气体的爆炸下限预测模型;第2种模型针对“可燃气体+惰性气体+氧气”混合,基于热平衡方程及混合气体的各组分浓度、淬灭电势及燃烧潜热,提出该多元可燃气体的爆炸极限预测模型。结果表明:在预测多元可燃气体的爆炸极限时,第1种模型具有较广泛的应用性,且表现出较高的准确度;第2种模型具有使用简单的特点,且扩展了LCR(勒夏特列原理)的应用范围。  相似文献   

12.
对可燃气体(或蒸气)最大试验安全间隙值的测定方法进行了研究,设计了一套测定可燃气体(或蒸气)与空气混合物混合爆炸的最大试验安全间隙值的装置,用其所测数据与IEC标准中的推荐数据具有较好的可比性,为爆炸性气体(或蒸气)的分级、分组以及隔爆型电气设备的设计提供了理论依据。  相似文献   

13.
Hybrid mixtures – mixtures of burnable dusts and burnable gases – pose special problems to industries, as their combined Lower Explosion Limit (LEL) can lie below the LEL of the single substances. Different mathematical relations have been proposed by various authors in literature to predict the Lower Explosion Limit of hybrid mixtures (LELhybrid). The aim of this work is to prove the validity or limitations of these formulas for various combinations of dusts and gases. The experiments were executed in a standard 20 L vessel apparatus used for dust explosion testing. Permanent spark with an ignition energy of 10 J was used as ignition source. The results obtained so far show that, there are some combinations of dust and gas where the proposed mathematical formulas to predict the lower explosible limits of hybrid mixtures are not safe enough.  相似文献   

14.
With the terms “complex hybrid mixtures”, we mean mixtures made of two or more combustible dusts mixed with flammable gas or vapors in air (or another comburent).In this work, the flammability and explosion behavior of selected complex hybrid mixtures was studied. In particular, we investigated mixtures of nicotinic acid, lycopodium and methane. We performed explosion tests in the 20-L explosion vessel at different overall (nicotinic plus lycopodium) dust concentrations, nicotinic acid/lycopodium ratios, and methane concentrations.An exceptional behavior (in terms of unexpected values of rate of pressure rise and pressure) was found for the complex hybrid mixtures containing lycopodium and nicotinic acid in equal amounts. This mixture was found to be much more reactive than all the other dust mixtures, whatever the dust concentration and the methane content.  相似文献   

15.
Most industrial powder processes handle mixtures of various flammable powders. Consequently, hazard evaluation leads to a reduction of the disaster damage that arises from dust explosions. Determining the minimum ignition energy (MIE) of flammable mixtures is critical for identifying possibility of accidental hazard in industry. The aim of this work is to measure the critical ignition energy of different kinds of pure dusts with various particle sizes as well as mixtures thereof.The results show that even the addition of a modest amount of a highly flammable powder to a less combustible powder has a significant impact on the MIE. The MIE varies considerably when the fraction of the highly flammable powder exceeds 20%. For dust mixtures consisting of combustible dusts, the relationship between the ignition energy of the mixture and the minimum ignition energy of the components follows the so-called harmonic model based upon the volume fraction of the pure dusts in the mixture. This correlation provides results which show satisfactory agreement with the experimental values.  相似文献   

16.
An experimental program has been undertaken to investigate the explosibility of selected organic dusts. The work is part of a larger research project aimed at examination of a category of combustible dusts known as marginally explosible. These are materials that appear to explode in laboratory-scale test chambers, but which may not produce appreciable overpressures and rates of pressure rise in intermediate-scale chambers. Recent work by other researchers has also demonstrated that for some materials, the reverse occurs – i.e., values of explosion parameters are higher in a 1-m3 chamber than one with a volume of 20 L. Uncertainties can therefore arise in the design of dust explosion risk reduction measures.The following materials were tested in the current work: niacin, lycopodium and polyethylene, all of which are well-known to be combustible and which cover a relatively wide range of explosion consequence severity. The concept of marginal explosibility was incorporated by testing both fine and coarse fractions of polyethylene. Experiments were conducted at Dalhousie University using the following equipment: (i) Siwek 20-L explosion chamber for determination of maximum explosion pressure (Pmax), volume-normalized maximum rate of pressure rise (KSt), and minimum explosible concentration (MEC), (ii) MIKE 3 apparatus for determination of minimum ignition energy (MIE), and (iii) BAM oven for determination of minimum ignition temperature (MIT). Testing was also conducted at Fauske & Associates, LLC using a 1-m3 explosion chamber for determination of Pmax, KSt and MEC. All equipment were calibrated against reference dusts, and relevant ASTM methodologies were followed in all tests.The explosion data followed known trends in accordance with relevant physical and chemical phenomena. For example, Pmax and KSt values for the fine sample of polyethylene were higher than those for the coarse sample because of the decrease in particle size. MEC values for all samples were comparable in both the 20-L and 1-m3 chambers. Pmax and KSt values compared favorably in the different size vessels except for the coarse polyethylene sample. In this case, KSt determined in a volume of 1 m3 was significantly higher than the value from 20-L testing. The fact that the 20-L KSt was low (23 bar m/s) does not indicate marginal explosibility of the coarse polyethylene. This sample is clearly explosible as evidenced by the measured values of MEC, MIE, MIT, and 1-m3 KSt (at both 550 and 600 ms ignition delay times).  相似文献   

17.
This paper describes dust explosion research conducted in an experimental mine and in a 20-L laboratory chamber at the Pittsburgh Research Laboratory (PRL) of the National Institute for Occupational Safety and Health (NIOSH). The primary purpose of this research is to improve safety in mining, but the data are also useful to other industries that manufacture, process, or use combustible dusts. Explosion characteristics such as the minimum explosible concentration and the rock dust inerting requirements were measured for various combustible dusts from the mining industries. These dusts included bituminous coals, gilsonite, oil shales, and sulfide ores. The full-scale tests were conducted in the Lake Lynn experimental mine of NIOSH. The mine tests were initiated by a methane–air explosion at the face (closed end) that both entrained and ignited the dust. The laboratory-scale tests were conducted in the 20-L chamber using ignitors of various energies. One purpose of the laboratory and mine comparison is to determine the conditions under which the laboratory tests best simulate the full-scale tests. The results of this research showed relatively good agreement between the laboratory and the large-scale tests in determining explosion limits. Full-scale experiments in the experimental mine were also conducted to evaluate the explosion resistance characteristics of seals that are used to separate non-ventilated, inactive workings from active workings of a mine. Results of these explosion tests show significant increases in explosion overpressure due to added coal dust and indications of pressure piling.  相似文献   

18.
可燃气体(液体蒸气)爆炸测试装置的改进研究   总被引:3,自引:2,他引:1  
以可燃气体(液体蒸气)爆炸测试装置改进为主线,综述国内外各种测试装置的优缺点。对不同装置、测试方法以及测试原理进行比较分析,研讨可燃气体爆炸的特点和爆炸参数测试方法以及对现有测试装置的改进方案。即对20 L爆炸测试装置的配气系统和控制系统进行了合理改进,使引射混合配气与循环混合配气相结合,使可燃气体(液体蒸气)与空气混合更均匀,控制操作更简便,还指出了今后研究工作中应注意的一些问题和研究重点。  相似文献   

19.
For the determination of safety characteristics of gases, vapors and dusts different types of ignition sources are used in international standards and guidelines. The paper presents test results of a comparative calorimetric and visual study between four different types of ignition sources. The ignition procedures were analyzed visually with a high-speed camera and electric recordings. In addition to that, the influence of the electrode-orientation, -distance as well as ignition energy on the reproducibility of the exploding wire igniter was tested.The exploding wire is already in use for standardized determination of safety characteristics of gases, first tests on the suitability of the exploding wire igniter for dust testing have been carried out but are not standardized yet. Using the exploding wire, the ignition energy can be varied from 2 J to 10 000 J (2 x 5000 J) and thus it could be used for gases, vapors, dusts and hybrid mixtures. Moreover it can be used at high initial pressures and it is the only ignition source with an easily measurable ignition energy release. Furthermore, it does not introduce another chemical reaction into the system.Finally, a proposal for a standard ignition source for explosion tests on hybrid mixtures is derived from the test results.  相似文献   

20.
Handling combustible dusts not only continues to pose a risk to industry but can also affect the safety of society. Explosion risk could be avoided or mitigated trying to guarantee inherent safety throughout the product life chain. One way to reduce the risks when dealing with combustible dust is to increase the Minimum Ignition Energy (MIE) in order to decrease combustible dust ignition sensitivity. To achieve this decrease, the inertization technique, also known as moderation, will be used. It consists of adding inert powders or humidity to the combustible dust. As sometimes end-users also must deal with the handling of flammable dusts, this study aims to find the most optimal inert for toner waste from printers and Holi powder (organic coloured dust from Indian parties), taking Lycopodium as a reference. Calcium carbonate, sodium bicarbonate and gypsum are proposed as inert materials. In addition, with the aim of giving a second use to biomass boiler waste or boiler slagging, this waste will be analyzed as inert, as well as how humidity affects the combustible dusts. Then, sodium bicarbonate will be tested at different granulometries to evaluate the effect of particle size on moderation process. The tests were carried out in the modified Hartmann apparatus or MIKE 3.0. Mechanisms such as decomposition of inert dust have been analyzed by thermogravimetric analysis (TGA)). The results show that gypsum and moisture are the best performing inert followed by calcium carbonate. Boiler slagging and solid bicarbonate contribute to a decrease in the MIE in some of the tests. The reasons for this deviation are discussed in the presented article. When sodium bicarbonate is analyzed at different particle sizes, it is found that the optimum particle size does not match the particle size of the combustible dust. According to the tests, there is an optimum point for which the inert powder provides better results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号