首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Objective: This study aimed at investigating the effects of vehicle impact velocity, vehicle front-end shape, and pedestrian size on injury risk to pedestrians in collisions with passenger vehicles with various frontal shapes. Method: A series of parametric studies was carried out using 2 total human model for safety (THUMS) pedestrian models (177 and 165?cm) and 4 vehicle finite element (FE) models with different front-end shapes (medium-size sedan, minicar, one-box vehicle, and sport utility vehicle [SUV]). The effects of the impact velocity on pedestrian injury risk were analyzed at velocities of 20, 30, 40, and 50?km/h. The dynamic response of the pedestrian was investigated, and the injury risk to the head, chest, pelvis, and lower extremities was compared in terms of the injury parameters head injury criteria (HIC), chest deflection, and von Mises stress distribution of the rib cage, pelvis force, and bending moment diagram of the lower extremities. Result: Vehicle impact velocity has the most significant influence on injury severity for adult pedestrians. All injury parameters can be reduced in severity by decreasing vehicle impact velocities. The head and lower extremities are at greater risk of injury in medium-size sedan and SUV collisions. The chest injury risk was particularly high in one-box vehicle impacts. The fracture risk of the pelvis was also high in one-box vehicle and SUV collisions. In minicar collisions, the injury risk was the smallest if the head did not make contact with the A-pillar. Conclusion: The vehicle impact velocity and vehicle front-end shape are 2 dominant factors that influence the pedestrian kinematics and injury severity. A significant reduction of all injuries can be achieved for all vehicle types when the vehicle impact velocity is less than 30?km/h. Vehicle designs consisting of a short front-end and a wide windshield area can protect pedestrians from fatalities. The results also could be valuable in the design of a pedestrian-friendly vehicle front-end shape. [Supplementary materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention for the following free supplemental resource: Head impact conditions and injury parameters in four-type vehicle collisions and validation result of the finite element model of one-box vehicle and minicar. ].  相似文献   

2.
Material selection for automotive closures is influenced by different factors such as cost, weight and structural performance. Among closures, the automotive bonnet must fulfill the requirements of pedestrian safety which is evaluated by child and adult headform impactors. The mechanisms of injury are complex, therefore; the Head Injury Criterion (HIC) which shows a measure of the likelihood of head injury arising from an impact is developed. HIC includes the effects of head acceleration and the duration of the acceleration.In this paper a new finite element model has been developed which is capable to simulate head impact phenomenon between headform impactors and composite bonnet. Then the behavior of three identical bonnets made of steel, aluminum and composite have been investigated by the developed model. It is shown that the energy absorption of aluminum bonnet is smaller than steel and composite ones and for keeping the aluminum bonnet at the same level of stiffness, it is necessary to increase the thickness. Therefore, the aluminum bonnet needs a larger space between the bonnet and the parts in the engine compartment. It is shown that although the displacement of headform for composite bonnet is more than that of steel and aluminum ones, but the amount of HIC’s, which are measured at the collision points are much less than those measured at the same collision points for steel and aluminum bonnets.In addition the comparison of three bonnets of the different materials has been done to highlight cost, weight, and structural performance issues.  相似文献   

3.
我国(讨论稿)和欧洲关于行人保护法规的异同点   总被引:1,自引:0,他引:1  
通过对欧洲和我国讨论稿关于行人保护法规的分析比较研究,在定义方面有着相同和不同;在下腿型冲击器对保险杠的试验、上腿型冲击器对保险杠的试验、儿童头型冲击器对发动机罩的试验、成人头型冲击器对发动机罩的试验等实验中,使用的实验仪器设备、实验手段和方法、实验程序、评价指标存在着相同和不同之处。与欧洲法规相比,我国讨论稿的一些评价指标值有待进一步完善,试验手段和方法需要进一步改进,通过比较分析来不断修订我国行人保护法规讨论稿,以利于我国未来正式颁布行人保护法规。  相似文献   

4.
IntroductionDue to the diversity of pedestrian-to-ground impact (secondary impact) mechanisms, secondary impacts always result in more unpredictable injuries as compared to the vehicle-to-pedestrian collisions (primary impact). The purpose of this study is to investigate the effects of vehicle frontal structure, vehicle impact velocity, and pedestrian size and gait on pedestrian-to-ground impact injury risk.MethodA total of 600 simulations were performed using the MADYMO multi-body system and four different sizes of pedestrians and six types initial gait were considered and impacted by five vehicle types at five impact velocities, respectively. The pedestrian rotation angle ranges (PRARs) (a, b, c, d) were defined to identify and classify the pedestrian rotation angles during the ground impact.ResultsThe PRARs a, b, and c were the ranges primarily observed during the pedestrian landing. The PRAR has a significant influence on pedestrian-to-ground impact injuries. However, there was no correlation between the vehicle velocity and head injury criterion (HIC) caused by the secondary impact. In low velocity collisions (20, 30 km/h), the severity of pedestrian head injury risk caused by the secondary impact was higher than that resulting from the primary impact.ConclusionsThe PRARs defined in this study are highly correlated with the pedestrian-to-ground impact mechanism, and can be used to further analyze the pedestrian secondary impact and to predict the head injury risk.Practical applicationsTo reduce the pedestrian secondary impact injury risk, passive and active safety countermeasures should be considered together to prevent the pedestrian's head-to-ground impacts, particularly in the low-velocity collisions.  相似文献   

5.
Objective: Field data show that side impact car crashes have become responsible for a greater proportion of the fatal crashes compared to frontal crashes, which suggests that the protection gained in frontal impact has not been matched in side impact. One of the reasons is the lack of understanding of the torso injury mechanisms in side impact. In particular, the deformation of the rib cage and how it affects the mechanical loading of the individual ribs have yet to be established. Therefore, the objective of this study was to characterize the ribcage deformation in side impacts by describing the kinematics of the sternum relative to the spine.

Methods: The 3D kinematics of the 1st and of the 5th or 6th thoracic vertebrae and of the sternum were obtained for three Post Mortem Human Subjects (PMHS) impacted laterally by a rigid wall traveling at 15 km/h. The experimental data were processed to express the kinematics of the sternum relative to the spine throughout the impact event. Methods were developed to interpolate the kinematics of the vertebrae for which experimental data were not available.

Results: The kinematics of the sternocostal junction for ribs 1 to 6 as well as the orientation of the sternum were expressed in the vertebra coordinate systems defined for each upper thoracic vertebra (T1 to T6). Corridors were designed for the motion of the sternum relative to each vertebra. In the experiments, the sternum moved upward for all rib levels (1 to 6), and away from the spine with an amplitude that increased with the decreasing rib level (from rib 1 to rib 6). None of the differences observed in the kinematics could be correlated to the occurrence of rib fractures.

Conclusions: This study provides both qualitative and quantitative information for the ribcage skeletal kinematics in side impact. This data set provides the information required to better evaluate computational models of the thorax for side impact simulations. The corridors developed in this study provide new biofidelity targets for the impact response of the ribcage. This study contributes to augmenting the state of knowledge of the human chest deformation in side impact to better characterize the rib fracture mechanisms.  相似文献   

6.
Vehicle acceleration and passenger compartment intrusion primarily determine car occupant injury risk. A new integrated vehicle-occupant model was developed and validated to predict these vehicle responses in offset, concentrated or full-width impact with various objects. The multi-body mathematical model consisted of a compartment, dash-panel and toepan-area and a front structure. The front structure was subdivided in 12 segments and a power-train, which were connected to the firewall by kinematic joints. The joints used local stiffness obtained from load-cell barrier crash-tests, and enabled local deformation of the vehicle front Similarly, the dash-panel and toepan were connected to the compartment, which enabled local intrusion into the compartment. A vehicle interior was modeled to enable contact-interactions with occupants, and the firewall geometry was included for interactions with the power-train.

The vehicle-model was validated with full frontal and 50% offset data and predicted vehicle acceleration, crush profile and local intrusion well. The validity of the model indicates its applicability in a wide range of frontal (non-distributed) collisions. Due to the use of local stiffness data, the model can greatly improve accident reconstruction research especially in frontal offset and pole impacts at both high and low speeds. The vehicle-model can be easily adjusted by changing vehicle-mass, size, or local stiffnesses of the front structure, and is a useful tool in compatibility research to estimate trends in car crash compatibility.  相似文献   

7.
In vehicle–pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

8.
研究提高人车碰撞中行人大腿的保护性能的方法。首先对大腿伤害机理,伤害评价指标以及车辆自身结构进行阐述和研究,总结车辆前端结构的关键参数;对某车型的前大灯进行结构改进,按照欧洲新车安全评鉴协会(Euro NCAP)行人大腿保护的试验评价方法,改进后进行碰撞试验;建立装有发动机罩安全气囊的整车仿真模型,验证安全气囊对行人大腿的保护性能。经过试验和仿真可以得出:车辆前大灯结构刚度改进和发动机罩安全气囊可以改善行人大腿的保护性能。  相似文献   

9.
A majority of laboratory-driven side-impact injury assessments are conducted using postmortem human subjects (PMHS) under the pure lateral mode. Because real-world injuries occur under pure and oblique modes, this study was designed to determine chest deflections and injuries using PMHS under the latter mode. Anthropometrical data were obtained and x-rays were taken. Specimens were seated on a sled and lateral impact acceleration corresponding to a change in velocity of 24 km/h was applied such that the vector was at an angle of 20 or 30 degrees. Chestbands were fixed at the level of the axilla (upper), xyphoid process (middle), and tenth rib (lower) location. Deflection contours as a function of time at the levels of the axilla and mid-sternum, representing the thorax, and at the tenth rib level, representing the abdomen, were evaluated for peak magnitudes. All data were normalized using mass-scaling procedures. Injuries were identified following the test at autopsy. Trauma graded according to the Abbreviated Injury Score, 1990 version, indicated primarily unilateral rib fractures and soft tissue abnormalities such as lung contusion and diaphragm laceration occurred. Mean peak deflections at the upper, middle, and lower levels of the chest for the 30-degree tests were 96.2, 78.5, and 76.8 mm. For the 20-degree tests, these magnitudes were 77.5, 89.9, and 73.6 mm. Statistical analysis indicated no significant (p > 0.05) differences in peak chest deflections at all levels between the two obliquities although the metric was significantly greater in oblique than pure lateral impacts at the mid and lower thoracic levels. These response data are valuable in oblique lateral impact assessments.  相似文献   

10.
Abstract

Objective: The focus of this study is side impact. Though occupant injury assessment and protection in nearside impacts has received considerable attention and safety standards have been promulgated, field studies show that a majority of far-side occupant injuries are focused on the head and thorax. The 50th percentile male Test Device for Human Occupant Restraint (THOR) has been used in oblique and lateral far-side impact sled tests, and regional body accelerations and forces and moments recorded by load cells have been previously reported. The aim of this study is to evaluate the chestband-based deflection responses from these tests.

Methods: The 3-point belt–restrained 50th percentile male THOR dummy was seated upright in a buck consisting of a rigid flat seat, simulated center console, dashboard, far-side side door structure, and armrest. It was designed to conduct pure lateral and oblique impacts. The center console, dashboard, simulated door structure, and armrest were covered with energy-absorbing materials. A center-mounted airbag was mounted to the right side of the seat. Two 59-gage chestbands were routed on the circumference of the thorax, with the upper and lower chestbands at the level of the third and sixth ribs, respectively, following the rib geometry. Oblique and pure lateral far-side impact tests with and without airbags were conducted at 8.3 m/s. Maximum chest deflections were computed by processing temporal contours using custom software and 3 methods: Procedures paralleling human cadaver studies, using the actual anchor point location and actual alignment of the InfraRed Telescoping Rods for the Assessment of Chest Compression (IR-TRACC) in the dummy on each aspect—that is, right or left,—and using the same anchor location of the internal sensor but determining the location of the peak chest deflection on the contour confined to the aspect of the sensor; these were termed the SD, ID, and TD metrics, respectively.

Results: All deformation contours at the upper and lower thorax levels and associated peak deflections are given for all tests. Briefly, the ID metrics were the lowest in magnitude for both pure lateral and oblique modes, regardless of the presence or absence of an airbag. This was followed by the TD metric, and the SD metric produced the greatest deflections.

Conclusion: The chestbands provide a unique opportunity to compute peak deflections that parallel current IR-TRACC-type deflections and allow computation of peak deflections independent of the initial point of attachment to the rib. The differing locations of the peak deflection vectors along the rib contours for different test conditions suggest that a priori attachment is less effective. Further, varying magnitudes of the differences between ID and TD metrics underscore the difficulty in extrapolating ID outputs under different conditions: Pure lateral versus oblique, airbag presence, and thoracic levels. Deflection measurements should, therefore, not be limited to an instrument that can only track from a fixed point. For improved predictions, these results suggest the need to investigate alternative techniques, such as optical methods to improve chest deflection measurements for far-side occupant injury assessment and mitigation.  相似文献   

11.
OBJECTIVE: This study addressed the effects of vehicle height mismatch in side impact crashes. A light truck or SUV tends to strike the door of a passenger car higher causing the upper border to lead into the occupant space. Conversely, an impact centered lower on the door, from a passenger car, causes the lower border to lead. We proposed the hypothesis that the type of injury sustained by the occupant could be related to door orientation during its intrusion into the passenger compartment. METHOD: Data on door orientation and nearside occupant injuries were collected from 125 side impact crashes reported in the CIREN database. Experimental testing was performed using a pendulum carrying a frame and a vehicle door, impacting against a USDOT SID. The frame allowed the door orientation to be changed. A model was developed in MADYMO (v 6.2) using the more biofidelic dummies, BIOSID, and SIDIIs as well as USDOT SID. RESULTS: In side impact crashes with the lower border of the door leading, 81% of occupants sustained pelvic injury, 42% suffered rib fractures, and the rate of organ injury was 0.84. With the upper border leading, 46% of occupants sustained pelvic injury, 71% sustained rib fracture, and the rate of organ injuries per case increased to 1.13. The differences in the groups with respect to pelvic injury were significant at p = 0.01, rib fracture, p = 0.10, and organ injury, p = 0.001. Experimental testing showed that when the door angle changed from lower to upper border leading, peak T4 acceleration increased by 273% and pelvic acceleration decreased by 44%. The model demonstrated that when the door angle changed from lower to upper border leading, the USDOT SID showed a 29% increase in T4 acceleration and a 57% decrease in pelvic acceleration. The BIOSID dummy demonstrated a 36% increase in T1 acceleration, a 44% increase in abdominal rib 1 deflection, a 91% increase in thoracic rib 1 deflection, and a 33% decrease in pelvic acceleration. CONCLUSIONS: These data add more insight to the problem of mismatch during side impacts, where the bumper of the striking vehicle overrides the door beam, causing the upper part of the door to lead the intrusion into the passenger compartment. Even with the same delta V and intrusion, with the upper border of the door leading, more severe chest and organ injuries resulted. This data suggests that door orientation should be considered when testing subsystems for side impact protection.  相似文献   

12.
To investigate the effects of vehicle impact velocity and front-end structure on the dynamic responses of child pedestrians, an extensive parametric study was carried out using two child mathematical models at 6 and 15 years old. The effect of the vehicle impact velocity was studied at 30, 40, and 50 km/h in terms of the head linear velocity, impact angle, and head angular velocity as well as various injury parameters concerning the head, chest, pelvis, and lower extremities. The variation of vehicle front-end shape was determined according to the shape corridors of modern vehicles, while the stiffness characteristics of the bumper, hood edge, and hood were varied within stiffness corridors obtained from dynamic component tests. The simulation results show that the vehicle impact speed is of great importance on the kinematics and resulting injury severity of child pedestrians. A significant reduction in all injury parameters can be achieved as the vehicle impact speed decreases to 30 km/h. The head and lower extremities of children are at higher injury risks than other body regions. Older children are exposed to higher injury risks to the head and lower leg, whereas younger ones sustain more severe impact loads to the pelvis and upper leg. The results from factorial analysis indicate that the hood-edge height has a significant effect on the kinematics and head impact responses of children. A higher hood edge could reduce the severity of head impact for younger children, but aggravate the risks of head injury for older ones. A significant interaction exists between the bumper height and the hood-edge height on the head impact responses of younger child. Nevertheless, improving the energy absorption performance of the hood seems effective for mitigating the severity of head injuries for children.  相似文献   

13.
OBJECTIVE: To evaluate if precrash vehicle movement is associated with the severity of pedestrian injury. METHODS: We used comprehensive information on pedestrian, vehicle, and injury-related characteristics gathered in the Pedestrian Crash Data Study (PCDS), conducted by the National Highway Traffic Safety Administration (NHTSA) (1994-1998). The odds ratio of severe injuries (injury severity score >/= 15) and crash fatality rate for right- and left-turn collisions at intersection compared with straight vehicle movement were compared using a logistic regression model and taking into consideration the type of vehicle and age of the pedestrians as potential effect modifiers. Later we evaluated the intermediate effect of impact speed on the association by adding it to the logistic regression model. RESULTS: Of 255 collisions eligible for this analysis, the proportion of pedestrian hit during straight movement, right turns, and left turns were 48%, 32%, and 10%, respectively. Sixty percent of the pedestrians in left-turn crashes and 67% of them in right-turn collisions were hit from their left side. For straight movements the pedestrians were equally likely to be struck beginning from the left or right side of the street.After adjustment for pedestrian's age, vehicle movement was a significant predictor of severe injuries (p < 0.0001) and case fatality (p = 0.003). The association between vehicle precrash movement and severe injuries (p = 0.551) and case fatality (p = 0.912) vanished after adjusting for impact speed. This indicated that the observed association was probably the result of the difference in impact speed and not the precrash movement of the vehicle. CONCLUSION: Pedestrian safety interventions that aim at environmental modifications, such as crosswalk repositioning, might be the most efficient means in reducing right- or left-turn collisions at intersection, while pedestrians' behavioral modifications should be the priority for alleviating the magnitude of the collisions that happen in vehicles' straight movements.  相似文献   

14.
Objectives: The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians.

Methods: The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization.

Results: An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered.

Conclusions: Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.  相似文献   


15.
OBJECTIVE: The objective of the study was to determine which vehicle factors are significantly related to pelvic injury in side impact collisions. Identification of relevant parameters could aid in the reduction of these injuries. METHOD: Side impact crashes from the CIREN database were separated into those in which the occupant sustained a pelvic fracture and those in which no pelvic fracture occurred, although all occupants had serious injuries. A multibody MADYMO model was created of a USDOT SINCAP (U.S. Department of Transportation Side Impact New Car Assessment Program) test of a vehicle with a large center console. RESULTS: From a study of 113 side impact crashes in the ciren database, nearside occupants with pelvic fractures (n = 78) had (i) more door intrusion (mean, 37 vs. 32 cm, p = 0.02) than those who had serious injuries, but not pelvic fractures (ii) a greater likelihood that the lower border of the door intruded more than the upper part (40% vs. 18%, p < 0.025); and (iii) a greater likelihood that their vehicle had a center console (47 vs. 17%, p < 0.005). Other parameters such as occupant age, weight, gender, vehicle weight, and struck vehicle speed change were not significantly different. MADYMO modeling showed that with a center console, an initial positive pelvic acceleration occurred at about 30 msec, followed at about 45 msec by a second acceleration peak in the opposite direction. Reducing console stiffness reduced the second acceleration but not the initial peak. Allowing the seat to translate laterally when contacted by the door reduced the initial pelvic acceleration by 50% and eliminated the second acceleration peak. CONCLUSIONS: Redesigning the center console using less stiff materials and allowing some lateral translation of the seat could aid in reducing pelvic injuries in side impact collisions.  相似文献   

16.
The objective was to assess head injury risks and kinematics of adult pedestrians and bicyclists in primary impact to the passenger cars and secondary impact to the ground using real world accident data and computer reconstructions of the accidents. For this purpose, a subsample of 402 pedestrians and 940 bicyclists from the GIDAS database, Germany, was used for the statistical analysis, from which 22 pedestrian and 18 bicyclist accidents were further selected for reconstruction. PC-Crash was used to calculate impact conditions, such as vehicle impact velocity, vehicle kinematic sequence, and thrown distance. These conditions were employed to identify the initial conditions in reconstruction in MADYMO program. A comparable analysis was conducted based on the results from accident analysis and computer reconstructions for the impact configurations and the resulting injury patterns of pedestrians and bicyclists in view of head injury risks. Differences in HIC, head-relative impact velocity, linear acceleration, maximum angular velocity and acceleration, contact force, thrown distance, Wrap Around Distance (WAD), and head contact time were evaluated. Injury risk curves were generated by using a logistic regression model for vehicle impact velocity. The results indicate that bicyclists suffered less severe injuries compared with severity of pedestrian injuries. In the selected samples, the AIS 2+ and AIS 3+ head injury risks for pedestrians are 50% probability at impact speed of 38.87 km/h and 54.39 km/h respectively, while for bicyclists at 53.66 km/h and 58.89 km/h respectively. The findings of high injury risks suggested that in the area with high frequency car-pedestrian accidents, the vehicle speed limit should be 40 km/h, while in the area with high frequency car-cyclist accidents the vehicle speed limit should be 50 km/h.  相似文献   

17.
Objective: In previous research, a tool chain to simulate vehicle–pedestrian accidents from ordinary driving state to in-crash has been developed. This tool chain allows for injury criteria-based, vehicle-specific (geometry, stiffness, active safety systems, etc.) assessments. Due to the complex nature of the included finite element analysis (FEA) models, calculation times are very high. This is a major drawback for using FEA models in large-scale effectiveness assessment studies. Therefore, fast calculating surrogate models to approximate the relevant injury criteria as a function of pedestrian vehicle collision constellations have to be developed.

Method: The development of surrogate models for head and leg injury criteria to overcome the problem of long calculation times while preserving high detail level of results for effectiveness analysis is shown in this article. These surrogate models are then used in the tool chain as time-efficient replacements for the FEA model to approximate the injury criteria values. The method consists of the following steps: Selection of suitable training data sets out of a large number of given collision constellations, detailed FEA calculations with the training data sets as input, and training of the surrogate models with the FEA model's input and output values.

Results: A separate surrogate model was created for each injury criterion, consisting of a response surface that maps the input parameters (i.e., leg impactor position and velocity) to the output value. In addition, a performance test comparing surrogate model predictions of additional collision constellations to the results of respective FEA calculations was carried out. The developed method allows for prediction of injury criteria based on impact constellation for a given vehicle. Because the surrogate models are specific to a certain vehicle, training has to be redone for a new vehicle. Still, there is a large benefit regarding calculation time when doing large-scale studies.

Conclusion: The method can be used in prospective effectiveness assessment studies of new vehicle safety features and takes into account specific local features of a vehicle (geometry, stiffness, etc.) as well as external parameters (location and velocity of pedestrian impact). Furthermore, it can be easily extended to other injury criteria or accident scenarios; for example, cyclist accidents.  相似文献   

18.
Objectives: The 2 objectives of this study are to (1) examine the rib and sternal fractures sustained by small stature elderly females in simulated frontal crashes and (2) determine how the findings are characterized by prior knowledge and field data.

Methods: A test series was conducted to evaluate the response of 5 elderly (average age 76 years) female postmortem human subjects (PMHS), similar in mass and size to a 5th percentile female, in 30 km/h frontal sled tests. The subjects were restrained on a rigid planar seat by bilateral rigid knee bolsters, pelvic blocks, and a custom force-limited 3-point shoulder and lap belt. Posttest subject injury assessment included identifying rib cage fractures by means of a radiologist read of a posttest computed tomography (CT) and an autopsy. The data from a motion capture camera system were processed to provide chest deflection, defined as the movement of the sternum relative to the spine at the level of T8.

?A complementary field data investigation involved querying the NASS-CDS database over the years 1997–2012. The targeted cases involved belted front seat small female passenger vehicle occupants over 40 years old who were injured in 25 to 35 km/h delta-V frontal crashes (11 to 1 o'clock).

Results: Peak upper shoulder belt tension averaged 1,970 N (SD = 140 N) in the sled tests. For all subjects, the peak x-axis deflection was recorded at the sternum with an average of ?44.5 mm or 25% of chest depth. The thoracic injury severity based on the number and distribution of rib fractures yielded 4 subjects coded as Abbreviated Injury Scale (AIS) 3 (serious) and one as AIS 5 (critical). The NASS-CDS field data investigation of small females identified 205 occupants who met the search criteria. Rib fractures were reported for 2.7% of the female occupants.

Conclusions: The small elderly test subjects sustained a higher number of rib cage fractures than expected in what was intended to be a minimally injurious frontal crash test condition. Neither field studies nor prior laboratory frontal sled tests conducted with 50th percentile male PMHS predicted the injury severity observed. Although this was a limited study, the results justify further exploration of the risk of rib cage injury for small elderly female occupants.  相似文献   

19.
Because of rapid increase in the urban population and hence road traffic, the vehicle–pedestrian crashes are more frequent and have become a major concern in road traffic safety. Though the bumper of a vehicle plays an important role to protect the vehicle body damage in low speed impacts, many bumpers particularly in larger vehicles are too stiff for pedestrian protection and safety. To prevent lower extremity injuries in car–pedestrian collisions, it is important to determine the loadings that car front structures impart on the lower extremities and the mechanisms by which injuries are caused. In the present work, a dynamic legform impactor model is introduced and validated against EEVC/WG17 criteria. The collision mechanism between a GMT bumper and the legform impactor model is investigated numerically using LS-DYNA software. The effect of the height of the impact point of bumper assembly to lower extremity injuries is also investigated. In this paper, it is shown that changing the local stiffness of bumper assembly due to the change in the height of the bumper and distribution of stiffness from upper parts of the bumper assembly to lower parts are the most important parameters in the pedestrian’s leg injuries. As lower extremity injuries are related to the lower bumper height, developing special legform impactors for different countries with different average person height seems essential in investigating the effect of people’s height on lower extremity injuries.  相似文献   

20.
Background: There is a need for routine estimates of injury recovery costs from pedestrian collisions using hospital separation records for economic evaluations.

Objective: To estimate the cost of injury recovery following pedestrian–vehicle collisions using the personal injury recover cost (PIRC) equation using key demographic and injury characteristics.

Method: An estimation of the costs of on-road pedestrian–vehicle collisions involving individuals who were injured and hospitalized in New South Wales (NSW), Australia, from 2002 to 2011 using the PIRC equation. The PIRC estimates individual injury recovery costs and does not include costs associated with property damage, vehicle repair, or rescue services. Individual recovery costs associated with severe traumatic brain injury (TBI) were estimated. The injured individual's mean, median, and total injury recovery costs are described for key demographic, injury, and crash characteristics.

Results: There were 9,781 pedestrians who were injured, costing an estimated total of $2.4 billion in personal injury recovery costs, an annual cost of $243 million. Males had a total injury recovery cost 1.7 times higher than females. The median injury recovery cost decreased with increasing age. TBI ($248,491) and spinal cord and vertebral column injuries ($264,103) had the highest median injury recovery costs for the body region of the most severe injury. TBI accounted for 22.6% of the total injury recovery costs for the most severe injury sustained. Just over one third of pedestrians sustained 4 or more injuries, with a median cost of $243,992, which was 1.6 times higher than the cost for a pedestrian who sustained a single injury ($153,682).

Conclusions: Personal injury recovery costs following pedestrian–vehicle collisions where a pedestrian is injured are substantial in NSW. The PIRC equation enables the economic cost burden of road traffic injury to be calculated using hospital separation data. The PIRC enables comprehensive personal injury recovery costs to be estimated and would aid in economic evaluations of preventive strategies in road safety.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号