首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A novel nanocomposite was synthesized by incorporating three different types of flame-retardants and its extinguishing performance was tested for gaseous fires. The nanocomposite consists of the inorganic magnesium hydroxide (MH) nanoparticles as the dominant component, the nitrogen-based melamine cyanurate (MCA), and the phosphorus-based ODOPB. The wet mixing, dry mixing, and ultrasonic agitation were employed in the preparation process to enhance the homogeneity of the nanocomposite. The prepared powders were characterized using a series of analytical instruments including X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravity analyzer (TGA), and differential scanning calorimeter (DSC). The efficiency of various samples in extinguishing gaseous fires was investigated in a lab-scale extinguishing system. The fire extinguishing tests indicated that the nanocomposite is considerably more effective in fire extinguishing than other powders in terms of extinction time and agent mass consumed. The fire extinction time of nanocomposite was 45.2% shorter than that of commercial ABC-MAP powder. Furthermore, the consumed amount of nanocomposite was 63.2% less than that of commercial powder. In addition, the order of extinguishing mass concentrations was as follows: the novel nanocomposite (103.7 g/m3) < MH/MCA (148.1 g/m3) < MH/ODOPB (155.6 g/m3) < MH (170.4 g/m3) < commercial ABC powder (281.5 g/m3) < MCA/ODOPB (384.1 g/m3). The fire suppression mechanisms of the nanocomposite were also discussed. It was inferred that the extinguishing mechanism of nanocomposite comprised of simultaneous chemical and physical inhibition actions involving chemical inhibition action, cooling action, and asphyxiation action. This study provides a promising attempt to gain benefits from the striking features of nanotechnology and flame-retardants in extinguishing gaseous fires.  相似文献   

2.
Fire accidents of chemical installations may cause domino effects in atmospheric tank farms, where a large amount of hazardous substances are stored or processed. Pool fire is a major form of fire accidents, and the thermal radiation from pool fire is the primary hazard of domino accidents. The coupling of multiple pool fires is a realistic and important accident phenomenon that enhances the propagation of domino accidents. However, previous research has mostly focused on the escalation of domino accidents induced by a single pool fire. To overcome the drawback, in this study, the failure of a storage tank under the coupling effect of multiple pool fires was studied in view of spatial and temporal synergistic process. The historical accident statistics indicated that the accident scenario of two-pool fires accounted for 30.6% in pool fires. The domino accident scenario involving three tanks is analyzed, and the typical layout of tanks is isosceles right triangle based on Chinese standard “GB50341-2014”. The thermal response and damage of a target tank heated by pool fires were numerically investigated. The volume of 500 m3, 3000 m3, 5000 m3 and 10000 m3 were selected. Flame temperature was obtained by FDS, and then was input onto the finite element model. The temperature field and stress field of target tanks were simulated by ABAQUS. The results showed that the temperature rise rate of the target tanks under multiple pool fires was higher than that under a single pool fire. The failure time of the tank under the coupling effect of multiple fires was lower than that under the superposition of multiple fires without the first stage. The stress and yield strength were compared to judge the failure of the target tank. The model of failure time for the tank under the coupling effect of pool fires was established. Through the verification, the deviation of this model is 4.02%, which is better than the deviation of 15.76% with Cozzani's model.  相似文献   

3.
For an accident involving a large-scale internal floating-roof tank with 28.4 m diameter and filled with 4600 m3 gasoline, the actual behavior of the gasoline fire and the fire-fighting strategies that were applied to it were analyzed in terms of the heat release rate, burning rate, and regression rate. During the accident, the initial fire suppression strategy failed and the gasoline was moved to an external tank. A total of 2800 m3 gasoline was burned for 17 h with a resulting heat release rate of 1475 MW. The long duration of the fire burning was attributed to the burning surface of the gasoline, which was not covered with foam at the beginning of the fire using the active foam fire-extinguishing system due to damage to one of the foam chambers. The average regression rate of the gasoline was 0.16 m/h after 8 h of burning and 0.35 m/h when the fire was completely suppressed.  相似文献   

4.
龙玟蒽  姚斌 《火灾科学》2021,30(1):30-37
古商业街木结构建筑较多,防火间距先天不足,发生火灾后蔓延迅速,有必要开展木结构建筑引燃特性研究以获得合理的防火间距设置参数。以古商业街为研究对象,以临界温度和热辐射强度作为着火建筑对面木结构建筑被引燃的判定指标,综合考虑环境风速、建筑间距、火源功率、喷淋系统等因素,运用火灾动力学模拟软件FDS分析系列火灾场景下的温度和热辐射强度特性,建立防火间距与火源功率、环境风速的关系式,获得适用于古商业街的防火间距控制参数及其相应的消防强化措施。结果表明:当建筑间距在3 m以下时高温引燃和热辐射引燃共同作用引燃正对面建筑,当建筑间距在3 m以上时以热辐射引燃为主;正对面建筑表面的热辐射强度先随环境风速增大而增大,达到最大值后随环境风速增大而减小;古街木结构建筑之间存在最小防火间距,该数值不受环境风速影响,仅与火源功率有关,在火源功率为3 MW~20 MW条件下,最小防火间距与火源功率满足线性关系。  相似文献   

5.
On the Metropolitan Expressway in Tokyo, a tank car exploded because it was carrying hydrogen peroxide (H2O2) in a compartment in which copper chloride (CuCl2) remained. Although the main cause of the accident was trivial, the background on the accident suggested that an induction period in the reaction led to a mistake. This report describes the experimental investigation of the catalytic ability of CuCl2, and comparing it with two other copper(II) compounds (nitrate: Cu(NO3)2; and copper sulfate: CuSO4) and three iron(III) compounds (chloride: FeCl3; nitrate: Fe(NO3)3; and sulfate: Fe2(SO4)3).The experiments were performed using a reaction calorimeter. During the experiments at 35 °C, 2×10−5 mol of copper compounds slowly reacted with H2O2 and generated a precipitate. The iron compounds allowed the hydrogen peroxide to violently decompose. A 1×10−4 mol solution of CuCl2, however, produced a violent decomposition at 35 °C. At 15 °C, a moderate heat release occurred.Based on these results, the concentration and temperature dependence of the catalytic ability of CuCl2 were postulated to contribute to the induction period observed in the accident.  相似文献   

6.
Nitrocellulose is a flammable compound produced by cellulose nitration. The nitrocellulose production and handling are associated with a risk of fire and explosion. Nitrocellulose is used as either collodion cotton (<12.5% N) or as an explosive (>12.5% N). Nitrocellulose is a fibrous or powdered substance and may detonate or burn upon certain conditions. The article compares the combustion parameters of dry nitrocellulose in the KV-150M2-UIBE explosion chamber at the concentrations of 250, 500 and 750 g m−3. To ignite a nitrocellulose sample, six different types of igniters were used. A commercially available 5 kJ pyrotechnic igniter was used as the standard. Also used were a nitrocellulose igniter, a pyrotechnic igniter with magnesium powder and KNO3/KClO3, and an exploding wire (Kanthal and tungsten wire). The examined igniters were found to affect the explosion parameters of dispersed nitrocellulose. The deviation of the explosion constant Kst reached 50% of the standard value. The highest pressure of 12.73 bar g was reached at a concentration of 750 g m−3 and an igniter exploding wire with Kanthal wire. The highest Kst value of 287.9 bar.m.s−1 was achieved at a concentration of 750 g m−3, when using the pyrotechnic igniter with KClO3 and magnesium powder.  相似文献   

7.
The aging of many of the installations in the oil and gas industry may increase the likelihood of loss of containment of flammable substances, which could lead to major accidents. Flame temperatures in a typical hydrocarbon fire may reach 1100–1200 °C, which are associated with heat flux levels between 250 and 350 kW/m2. To limit or delay the escalation of an initial fire, passive fire protection (PFP) can be an effective barrier. Additionally, both equipment and piping may require thermal insulation for heat or cold conservation. Previous studies have investigated whether thermal insulation alone may protect the equipment for a required time period, e.g., until adequate depressurization is achieved. The present study entails the development of a numerical model for predicting the heat transport through a multi-layer wall of a distillation column exposed to fire. The outer surface is covered by stainless-steel weather protective cladding, followed by PFP, thermal insulation, and finally an inner column of carbon steel of variable thicknesses. The model for the breakdown of thermal insulation is based on observed dimensional changes and independent measurements of the thermal conductivity of the insulation after heat treatment. The calculated temperature profiles of thermally insulated carbon steel during fire exposure are compared to fire test results for carbon steel with thicknesses of 16, 12, 6 and 3 mm. The model's predictions agree reasonably well with the experiments. The degradation of the thermal insulation at temperatures above 1100 °C limits its applicability as fire protection, especially for low carbon-steel thickness. However, the model predicts that adding a 10-mm layer of more heat-resistant insulation (PFP) inside the fire-exposed cladding may considerably extend the time to breakdown of the thermal insulation.  相似文献   

8.
纵孟  雷世林  张淮 《安全》2020,(4):73-75
高层建筑外围火灾灭火工作开展困难,为增强灭火效果,本文按照自上而下的灭火思路,探讨在高层建筑顶部设计一种新型灭火装置。该装置可迅速转向火灾一侧,升降到准确的高度,从外向内灭火。克服了现有云梯消防车存在的举高有限、供水器材的耐压强度不够等问题。该装置的设计可在紧急情况下弥补现有灭火设施的不足,为高层建筑外围灭火解决方案的完善提供了新的参考。  相似文献   

9.
When a chemical tank fire happens in a storage area, it is very important to protect adjacent tanks so as to decrease fire accident losses. In this paper, a new thermal protection method was put forward based on a PPH (potassium polyacrylate & hectorite) thermal insulation composite material spraying on an adjacent tank under fire. Firstly, the PPH material was prepared successfully by a polymerization reaction of potassium acrylate, hectorite, NaHSO3 and (NH4)2S2O8. Secondly, thermal insulation performance of the PPH material was characterized by heat transfer process at high incident heat flux using cone calorimeter. The results show that thermal insulation performance of the PPH material is affected by a content change of (NH4)2S2O8, NaHSO3 and hectorite in formulations. The content of (NH4)2S2O8 0.14 wt%, NaHSO3 1.38 wt% and hectorite 1.4 wt% was an optimum formulation ratio to obtain best thermal insulation performance. Finally, possible thermal insulation mechanisms of the PPH material were presented using SEM, TG and TG-IR techniques. One of the thermal insulation mechanisms is the incident heat flux absorbed by water evaporation from the PPH material. Another is the thermal protection of the char formed from the PPH material at high incident thermal radiation, which can prevent heat and mass transfer.  相似文献   

10.
Individual risk analysis of high-pressure natural gas pipelines   总被引:1,自引:0,他引:1  
Transmission pipelines carrying natural gas are not typically within secure industrial sites, but are routed across land out of the ownership of the pipeline company. If the natural gas is accidentally released and ignited, the hazard distance associated with these pipelines to people and property is known to range from under 20 m for a smaller pipeline at lower pressure to up to over 300 m for a larger pipeline at higher pressure. Therefore, pipeline operators and regulators must address the associated public safety issues.This paper focuses on a method to explicitly calculate the individual risk of a transmission pipeline carrying natural gas. The method is based on reasonable accident scenarios for route planning related to the pipeline's proximity to the surrounding buildings. The minimum proximity distances between the pipeline and buildings are based on the rupture of the pipeline, with the distances chosen to correspond to a radiation level of approximately 32 kW/m2. In the design criteria for steel pipelines for high-pressure gas transmission (IGE/TD/1), the minimum building proximity distances for rural areas are located between individual risk values of 10−5 and 10−6. Therefore, the risk from a natural gas transmission pipeline is low compared with risk at the building separated minimum distance from chemical industries.  相似文献   

11.
Using a dry dust removal system used for aluminium dust collection presents a dust explosion risk, whereas a wet dust removal system presents a risk of hydrogen fire and explosion. Neither system can attain a sufficient level of safety for use at aluminium processing sites. In this paper, soybean isoflavone, a non-toxic and environmentally sustainable flavonoid, was investigated to inhibit hydrogen production from aluminium dust and water. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize aluminium particles before and after the reaction. Soybean isoflavone was found to inhibit hydrogen production from aluminium dust and water. At a soybean isoflavone solution concentration of 2.1 g L−1, a dense protective film resulting from chemical adsorption on the surfaces of the aluminium particles isolated the aluminium particles from water molecules. This film blocked the reaction pathway between the aluminium particles and water to suppress hydrogen generation. This fundamental study addresses the problems of hydrogen fires and explosions in wet dust removal systems for aluminium dust collection and provides a novel, safe and effective method for aluminium dust removal.  相似文献   

12.
A significant number of pipeline operators use pipeline integrity management (PIM) to improve pipeline safety and reliability. Risk assessment is a critical step in PIM, because it determines the necessity of conducting the following steps in PIM for certain pipelines. Risk acceptance criteria are required in the process of risk assessment. Individual risk and societal risk are most frequently adopted as the two indicators of the risk acceptance criteria. To the best of the authors’ knowledge, quantitative societal risk acceptance criteria, especially for gas distribution pipelines, do not exit. The aim of this paper is to establish the societal risk acceptance criteria for gas distribution pipelines. Hence, FN curves were established using historical incident data from 2002 to 2017 provided by the U.S. Department of Transportation (DOT). Linear regression and the ALARP principle are used in evaluating the limits of the negligible line and intolerable line to obtain a graphical societal risk acceptance criterion for gas distribution pipelines. A line having a slope of −1.224, and an anchor point of (1, 8.413 × 10−7) is proposed as the negligible line. Further, the intolerable line has a slope of −1.224, and an anchor point of (1, 2.524 × 10−6). Both the negligible risk and the intolerable risk for the gas distribution pipeline are lower than the current societal risk acceptance criteria for hazardous installations. The reasons for these relatively lower risk acceptance criteria are discussed.  相似文献   

13.
本文针对局部火灾条件下钢结构屋架的防火保护问题,结合典型案例提出了一种基于性能计算分析的抗火保护设计评估分析方法.首先通过火灾场景分析及烟气运动模拟计算,得到钢结构屋架所处的热环境,再计算各构件在不同保护条件下的温升及应力分布,并判断构件及结构在不同的保护方式下是否失效,最后得到经济合理的保护区域和防火涂层厚度.该方法可以为类似的局部火灾条件下钢结构抗火保护提供参考.  相似文献   

14.
从建筑火灾坍塌事故的特点及危害入手,分析了火灾中影响建筑坍塌时间的因素,阐述了建筑火灾坍塌前兆,得出建筑火灾坍塌危险性评估结论:在无爆炸发生情况下,无先天质量问题的钢筋混凝土建筑,一般在火灾持续5、6个小时内不会发生整体坍塌;我国北方建筑比南方的建筑普遍抗烧塌性相对较强;按防震设计的震区建筑,其火灾抗塌性明显增强;灭火冷却及时的建筑不易坍塌。  相似文献   

15.
为深入了解古建筑火灾事故致因因素,提高古建筑消防安全管理水平,基于事故致因理论,采用德尔菲法从人员、古建筑消防系统、古建筑防火能力、安全管理与环境五个方面确定18个古建筑火灾致因因素,并建立古建筑火灾事故评价指标体系。同时运用实验室决策分析法(DEMATEL)构建矩阵对古建筑火灾致因因素进行分析。一方面,通过原因度定量结果对古建筑火灾致因因素的属性进行分类,确定其属于火灾原因因素还是结果因素;另一方面,通过中心度指标评价古建筑火灾各个致因因素的重要程度。进而利用解释结构模型(ISM)将致因因素进行层级划分,构建5层3阶的多级递阶模型,分析致因因素间的耦合和交互关系。结果表明,古建筑火灾事故的发生是近邻原因、过渡原因及本质原因共同作用的结果,并针对这三方面确定古建筑火灾事故重点管控方向。同时,在古建筑消防安全管理中,应重点关注中心度较大的致因因素。  相似文献   

16.
Electrical apparatuses are prone to arc, which generally causes a fire, even an explosion hazard, when a flammable gas mixture is present, especially during industrial processes. Terrible fire scenes are challenging for fire investigations. In this work, by performing a simultaneous thermal analysis test we simulated a fire environment and found that as the oxygen concentration decreased, the oxidation/exothermic peak temperature of ‘cause’ bead became higher, but the melting temperature was unaffected. Results indicated that the bead pattern underwent oxidation at approximately 831 °C, melting initiated at approximately 1060 °C, and the pattern then disappeared. The melted pattern grain changes were divided into three critical temperature stages: Approximately 600 °C, the onset temperature at which the melted pattern grains began to be equiaxed; approximately 831 °C, at which the grains were interspersed with oxygen-containing material; and 831–1060 °C, when the grains disappeared, which is a criterion for identifying electrical fires. However, the boundaries remained throughout the thermal environment process. Moreover, the bead pattern demonstrated three metallographic regions: Deep layer (Region I), the intermediate layer (Region Ⅱ), and surface layer (Region Ⅲ). Region I was the most thermally sensitive, in which equiaxed crystals first appeared. Region Ⅲ was the thermal reaction lag zone, in which the typical branching crystals finally disappeared, and Region Ⅱ was intermediate between Regions I and Ⅲ. The results may help fire investigators determine the fire scene temperature stages and provide support for fire evidence extraction.  相似文献   

17.
建筑火灾评估及双重性分析   总被引:2,自引:0,他引:2  
本文利用火灾危险性评估的原理,对火灾科学国家重点实验室的五层模型楼进行了初步的火险评估。确定性模型采用区域模拟的计算方法,并综合考虑了随机性因素。结果合理,对于建筑火灾的火险评估具有很好的参考价值。  相似文献   

18.
Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm−1, cell voltage (U) 4.4 V, current density (j) 185 mA cm−2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L−1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)−1, 4.1 ± 0.2 kg(Al) kg(MOr)−1 and 17.2 ± 0.9 kg(sludge) kg(MOr)−1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10−4 Ω cm−2 min−1 and 0.29 mA cm−2 min−1, respectively, as compared to 7.72 × 10−4 Ω cm−2 min−1 and 0.79 mA cm−2 min−1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min−1 in the traditional electrocoagulation process to 0.183 min−1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.  相似文献   

19.
A model of multiple domino scenarios and the risk of the domino effect, which is a sequential chain escalating from the primary unit to the last unit, is presented in this paper. The trajectories of fragments from all units, the ground distribution of projectiles, and the risk of the sequential chain of the domino effect were calculated using Monte Carlo simulations. The results showed that the range affected by the fragments from each tank included the other tanks, meaning that fragments from one tank could hit the other tanks and cause multiple accidents, and that the sequential chain of the domino effect could indeed happen. The distributions of ground impacts showed that tank fragments were projected over long distances, up to 1200 m from the source. The spatial distribution of the kinetic energy at ground impact for tank fragments was also obtained. Moreover, the magnitudes of the probabilities of the primary, secondary, third, and fourth accidents in the domino chain were respectively about 10−7, 10−11, 10−15, and 10−19. These results showed that for neighboring domino effect units in the same accident chain, the risk of the most recent domino effect was 104 times that of the following domino effect.  相似文献   

20.
发电厂到处都是易燃易爆物品 ,火灾事故发生率高 ,损失大 ,是防火重点单位。对全面加强发电厂的消防管理工作 ,有效地防止火灾事故发生 ,提出了一些建议和措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号