首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pure decomposition behavior of 2,2′-azobis (isobutyronitrile) (AIBN) and its physical phase transformation were examined and discussed. The thermal decomposition of this self-reactive azo compound was explored using differential scanning calorimetry (DSC) to elucidate the stages in the progress of this chemical reaction. DSC was used to predict the kinetic and process safety parameters, such as self-accelerating decomposition temperature (SADT), time to maximum reaction rate under adiabatic conditions (TMRad), and apparent activation energy (Ea), under isothermal and adiabatic conditions with thermal analysis models. Moreover, vent sizing package 2 (VSP2) was applied to examine the runaway reaction combined with simulation and experiments for thermal hazard assessment of AIBN. A thorough understanding of this reaction process can identify AIBN as a hazardous and vulnerable chemical during upset situations. The sublimation and melting of AIBN near its apparent onset decomposition temperature contributed to the initial steps of the reaction and explained the exothermic attributes of the peaks observed in the calorimetric investigation.  相似文献   

2.
3.
1,1-Di (tert-butylperoxy) cyclohexane (DTBPH) has been widely employed in the chemical industry. Unfortunately, organic peroxides have been involved in many serious fires and explosions in manufacturing processes, storage, and transportation. This study investigated the thermokinetic parameters by isothermal kinetic and non-isothermal-kinetic simulation, using differential scanning calorimetry (DSC) tests. DSC was applied to assess the kinetic parameters, such as kinetic model, frequency factor (ln k0), activation energy (Ea), reaction order, and heat of reaction (ΔHd). Comparisons of non-isothermal and isothermal-kinetic model simulation led to a beneficial kinetic model of thermal decomposition to predict the thermal hazard of DTBPH. Simulations of a 0.5 L Dewar vessel and 25 kg barrel commercial package in liquid thermal explosion models were performed and compared to the results in the literature. From the results, the optimal conditions for use of DTBPH to avoid violent runaway reactions during the storage and transportation were determined. This study established the features of thermal decomposition that could be executed as a reduction of energy potential and storage conditions in view of loss prevention.  相似文献   

4.
Liquid organic peroxides, such as tert-butyl peroxybenzoate (TBPB), have been widely employed in the petrifaction industry as a polymerization formation agent. This study investigated the thermokinetic parameters of TBPB by isothermal kinetic algorithms and non-isothermal kinetic equations, using thermal activity monitor III (TAM III) and differential scanning calorimetry (DSC), respectively. Simulations of 0.5 L, 25 kg, 55 gallon, and 400 kg reactors in liquid thermal explosion models were performed and compared to the results in the literature. A green thermal analysis was developed for a reactor containing TBPB to prevent pollution and reduce the energy consumption by thermal decomposition. It is based on the thermal hazard properties, such as the heat of decomposition (ΔHd), activation energy (Ea), self-accelerating decomposition temperature (SADT), control temperature (CT), emergency temperature (ET), and critical temperature (TCR). From the experimental results, the optimal conditions to avoid violent runaway reactions during the storage and transportation of TBPB were determined.  相似文献   

5.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   

6.
In this paper, the kinetic mechanism of AIBN, AMBN, and ABVN was proposed, and the effect of molecular structure on their thermal hazards based on the kinetic mechanism was investigated. Calculated by non-isothermal DSC datum, the kinetic mechanism of AIBN, AMBN, and ABVN is revealed by the linear relationship between the integrated form of mechanical function and reaction time. The results indicate that the thermal decomposition process is controlled by the Johnson-Mehl-Avrami equation. Based on the determination of kinetic mechanism function, the reaction rate constants at various heating rates are directly calculated, and the intercept of the best fitting straight line of reaction rate constants with heating rate is approximately equal to the reaction rate constant under isothermal conditions. Besides, theoretical values obtained by multiplying kinetic mechanism function by reaction rate are well consistent with the experimental values, suggesting that the kinetic mechanism obtained is credible. Bond Dissociation Energies (BDE) calculated by quantum chemical equations are employed to evaluate the thermodynamics stability of AIBN, AMBN, and ABVN. Depending on similar molecular structures, the influence of differentiated group structure on the thermodynamic stability represented by BDE and heat release and the kinetic stability characterized by reaction rate constant were revealed. Finally, the results demonstrate that the thermal hazard increases as the volume of substituent group and molecular weight.  相似文献   

7.
Thermal degradation of triacetone triperoxide (TATP) was studied using differential scanning calorimetry (DSC) and gas chromatography/mass spectrometry (GC/MS). TATP, a potential explosive material, is powerful organic peroxide (OP) that can be synthesized by available chemicals, such as acetone and hydrogen peroxide in the laboratory or industries. The thermokinetic parameters, such as exothermic onset temperature (T0) and heat of decomposition (ΔHd), were determined by DSC tests. The gas products from thermal degradation of TATP were identified using GC/MS technique.In this study, H2O2 was mixed with propanone (acetone) and H2SO4 catalysis that produced TATP. The T0 of TATP was determined to be 40 °C and Ea was calculated to be 65 kJ/mol. A thermal decomposition peak of H2O2 was analyzed by DSC and two thermal decomposition peaks of H2O2/propanone were determined. Therefore, H2O2/propanone mixture was applied to mix acid that was discovered a thermal decomposition peak (as TATP) in this study. According to risk assessment and analysis methodologies, risk assessment of TATP for the environmental and human safety issue was evaluated as 2-level of hazard probability rating (P) and 6-level of severity of consequences ratings (S). Therefore, the result of risk assessment is 12-point and was evaluated as “Undesirable” that should be enforced the effect of control method to reduce the risk.  相似文献   

8.
9.
Explosibility of polyurethane dusts produced in the recycling process of refrigerator and the ways to prevent the dust explosion were studied. In recent years, cyclopentane is often used as the foaming agent and this produces explosive atmosphere in the shredding process. The minimum explosive concentration of polyurethane dust, influence of coexisting cyclopentane gas on the explosibility, effect of relative humidity on the minimum explosive concentration of polyurethane dusts, the minimum ignition energy, influence of cyclopentane mixture on the explosion severity, etc. were investigated.The minimum explosive dust concentration decreased with the increase of cyclopentane concentration and increased with the increase of relative humidity. The minimum ignition energy was about 11 mJ. The ignition energy decreased with the increase of the cyclopentane gas concentration. The cyclopentane gas concentration up to about 5300 ppm did not influence too much on the explosion index (Kst) and maximum explosion pressure. From these, it would be a good way to increase the relative humidity and to regulate the cyclopentane concentration in the shredding process to prevent the dust explosion hazard.  相似文献   

10.
The key objective of this paper is the presentation of a new risk assessment tool for underground coal mines based on a simplified semi-quantitative estimation and assessment method.In order to determine the risk of explosion of any work process or activity in underground coal mines it is necessary to assess the risk. The proposed method is based on a Risk Index obtained as a product of three factors: frequency of each individual scenario Pucm, associated severity consequences Cucm and exposure time to explosive atmospheres Eucm. The influence of exposure time is usually not taken into account up to now. Moreover, the exposure to explosive atmospheres may affect factors of hazardous event probability as much as its consequences. There are many definitions of exposure to explosive atmospheres but in the case of underground coal mines the exposure is defined as frequency risk of firedamp and coal dust. The risk estimation and risk assessment are based on the developed of a risk matrix.The proposed methodology allows not only the estimation of the explosion risk but also gives an approach to decide if the proposal investment is well-justified or not in order to improve safety.  相似文献   

11.
This study investigated the thermal degradation energy (activation energy, Ea) for nitrocellulose (NC) with low nitrogen content of 11.71 mass%, so-called NC3, by using two different kinds of thermal analysis instruments: thermogravimetric analyzer (TGA) and differential scanning calorimetry (DSC). A comparison of Ea for various nitrogen content NC samples at two scanning rates (5 and 10 °C min?1) tested by TGA and DSC is also discussed in this paper. Meanwhile, our aim was to analyze the anti-degradation of Ea for NC with high nitrogen content, as so-called NC1. Thermal stability for NC1 with diphenylamine (DPA) was tested via DSC with 10 DPA concentrations in weights of 0, 0.25, 0.50, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, and 3.0 mass%. Experimental results indicated that Ea of NC3s was 319.91 kJ mol?1. Moreover, that while dosing DPA into NC1 the best recipe could be employed to avoid any violent NC1 runaway and also can be used to distinguish the differences of thermal decomposition Ea between NC with different nitrogen contents. This study established a fast and efficient procedure for thermal decomposition properties of NC, and could be applied as an intrinsically safer design during relevant operations.  相似文献   

12.
The polymerization reaction can lower the threshold of the required energy by the initiator to improve the efficiency of the overall process reaction. Emerging polymerization initiators are also a major focus of process improvement and technological progress. Azo compounds (azos), which used in dyeing applications, are subsequently used in polymerization reactions due to their highly exothermic reaction characteristics. Although higher heat release can promote polymerization and modify the product, heat generation may also cause process hazards.These thermal hazard parameters were studied by selecting dimethyl 2,2′-azobis(2,4-dimethylvaleronitrile) (ABVN), 2,2′-azobis(2-methyl propionate) (AIBME), 2,2′-azobis(2-methylpropionamide) dihydrochloride (AIBA), and 2,2′-azobis(isobutyronitrile) (AIBN), which are common azo initiators at present. Thermal hazards are closely related to the reaction kinetics of the substance itself. The form of the reaction, the apparent activation energy and the thermodynamic parameters of the exothermic mode were also obtained.Kinetic analysis of the actual process using the experimental data of the isothermal calorimetry model is rarely used in the evaluation of related thermal hazard characteristics. The simulation results revealed the kinetic azo models and were further applied to calculate the runaway situations of azo under specific boundary conditions.  相似文献   

13.
Powdery materials such as metallic or polymer powders play a considerable role in many industrial processes. Their use requires the introduction of preventive safeguard to control the plants safety. The mitigation of an explosion hazard, according to the ATEX 137 Directive (1999/92/EU), requires, among other things, the assessment of the dust ignition sensitivity. PRISME laboratory (University of Orléans) has developed an experimental set-up and methodology, using the Langlie test, for the quick determination of the explosion sensitivity of dusts. This method requires only 20 shots and ignition sensitivity is evaluated through the E50 (energy with an ignition probability of 0.5). A Hartmann tube, with a volume of 1.3 l, was designed and built. Many results on the energy ignition thresholds of partially oxidised aluminium were obtained using this experimental device (Baudry, 2007) and compared to literature. E50 evolution is the same as MIE but their respective values are different and MIE is lower than E50 however the link between E50 and MIE has not been elucidated.In this paper, the Langlie method is explained in detail for the determination of the parameters (mean value E50 and standard deviation σ) of the associated statistic law. The ignition probability versus applied energy is firstly measured for Lycopodium in order to validate the method. A comparison between the normal and the lognormal law was achieved and the best fit was obtained with the lognormal law.In a second part, the Langlie test was performed on different dusts such as aluminium, cornstarch, lycopodium, coal, and PA12 in order to determine E50 and σ for each dust. The energies E05 and E10 corresponding respectively to an ignition probability of 0.05 and 0.1 are determined with the lognormal law and compared to MIE find in literature. E05 and E10 values of ignition energy were found to be very close and were in good agreement with MIE in the literature.  相似文献   

14.
Starch is widely used in industrial production and in every life, and an increasing number of accidents of starch dust burning and explosions are occurring and have caused serious casualties and economic losses. Previous studies on the oxidative properties and microscopic characterization of coloured corn starch dust have been less systematic than the present study. To prevent coloured corn starch dust explosion accidents more effectively, thermogravimetry and Fourier transform infrared spectroscopy were applied to study the oxidation characteristics of coloured corn starch dust. Seven characteristic temperatures were determined from the thermogravimetric curves and derivative thermogravimetric curves of coloured corn starch dust. The entire oxidation process of coloured corn starch dust was divided into five stages, and a 60% mass loss occurred in the rapid oxidation stage. Three iso-conversion methods were used to calculate the apparent activation energy (Ea) and pre-exponential factor (A) at different oxidation stages. The value of Ea was found to be related to the difficulty of the reaction, and it had a positive correlation with lnA. Six kinds of gases were detected during the oxidation process. The oxidation mechanism was further analysed by the macro and micro characterization of the oxidation process. The findings provide a theoretical basis for preventing and controlling explosion accidents that involve coloured corn starch dust.  相似文献   

15.
16.
Flameproof enclosures having internal electrical components are generally used in classified hazardous areas such as underground coalmines, refineries and places where explosive gas atmosphere may be formed. Flameproof enclosure can withstand the pressure developed during an internal explosion of an explosive mixture due to electrical arc, spark or hot surface of internal electrical components. The internal electrical component of a flameproof enclosure can form ignition source and also work as an obstacle in the explosion wave propagation. The ignition source position and obstacle in a flameproof enclosure have significant effect on explosion pressure development and rate of explosion pressure rise. To study this effect three cylindrical flameproof enclosures with different diameters and heights are chosen to perform the experiment. The explosive mixture used for the experiment is stoichiometric composition of methane in air at normal atmospheric pressure and temperature.It is observed that the development of maximum explosion pressure (Pmax) and maximum rate of explosion pressure rise (dp/dt)ex in a cylindrical flameproof enclosure are influenced by the position of ignition source, presence of internal metal or non-metal obstacles (component). The severity index, KG is also calculated for the cylindrical enclosures and found that it is influenced by position of ignition source as well as blockage ratios (BR) of the obstacles in the enclosures.  相似文献   

17.
Pulverized materials such as metallic or polymer powders play a considerable role in many industrial processes. Their use requires the introduction of preventive safeguards to control the plant's safety.PA12 polymer powder processing by laser sintering is characteristic of this tendency. The present work concerns PA12 powder (bimodal particle size distribution: 10 μm and 55 μm) and relates to explosion sensitivity and the thermal degradation of this powder, which can occur during laser sintering. Minimum Ignition Energy is determined using a modified Hartmann tube combined with the Langlie method developed in the PRISME Laboratory. This study shows the influence of parameters such as distance between the electrodes, powder concentration and arc power on MIE values. Theses parameters vary in the range of 3–6 A for the current intensity of the spark and the electrode gap in the range of 2.5–4 mm. The MIE is obtained for a spark gap of 3 mm and current intensity of the 4 A spark in our device. It shows that the MIE is less than 40 mJ for concentrations approaching 1000 g/m3. At lower concentrations (under 150 g/m3) the MIE increases but discrepancies in measurements appear, probably because of the static electricity that creates strong irregularities in dust dispersion. The second part of this study concerns the thermal degradation of the PA12 which is performed by thermogravimetric experiments coupled with mass spectrometric (MS) analysis for gas investigation. The mass loss measurement combined with the gas analysis allows the principal stages of degradation to be determined so as to calculate the kinetics parameter PA12. Experiments have been performed for different heating rates between 1 and 30 K min?1 and the reproducibility of experiments has been verified. The activation energy is determined using two methods: Freidman and KAS. For a reaction rate of between 0.2 and 0.6, the activation energy is nearly constant. The KAS method gives a value of Ea = 250 kJ mol?1 and the Friedman method gives Ea = 300 kJ mol?1. The gas analysis by MS shows that oxidation begins at over 350 °C and finishes at under 650 °C with the formation of CO2 and H2O. Other major peaks with an m/z ratio of 29, 28 and 30 are noticed in this range of temperature. They show the presence of intermediate species such as C2H6, NO or CH2O. The presence of HCN is also detected (m/z ratio of 27).  相似文献   

18.
Analytical and numerical solutions are used to determine the critical conditions for thermal explosion of autocatalytic reaction. The solutions covers both the reaction governed by the Arrhenius kinetics equation and the Frank-Kamenetskii approximation for that equation. The definition of criticality as the point at which d2θ/2=0, d3θ/3=0 and /〉0 is used here. The study is dealt with low and high exothermicity (B) of the reaction and their effects on the critical parameters. The numerical solutions cover the whole reaction from start at β = 0 up to the end at β = 1.0. All trajectories from subcritical, critical to supercritical are offered. The effects of different parameters such as B, ψ and θa (ambient temperature) on the critical conditions are presented. The results showed that the lower the autocatalytic factor (β0) is, the pronounced autocatalytic reaction explosion. The analytical solution offered analytical expressions for the critical condition and the different limits of the solutions are clarified. It was found that the numerical results confirm the analytical solution.  相似文献   

19.
Hydrogen peroxide (H2O2), historically, due to its broad applications in the chemical industries, has caused many serious fires and explosions around the world. Its thermal hazards may also be incurred by an incompatible reaction with other chemicals, and a runaway reaction may be induced in the last stage. This study applied thermal analytical methods to explore the H2O2 leading to these accidents by incompatibility and to discuss what might be formed by the upset situations. Thermal hazard analysis contained a solvent, propanone (CH3COCH3, so-called acetone), which was deliberately selected to mix with H2O2 for investigating the degree of thermal hazard. Differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2) were employed to evaluate the thermal hazard of H2O2. The results indicated that H2O2 is highly hazardous while mixed with propanone, as a potential contaminant. The time to maximum rate (TMR) was used as emergency response time in the chemical industries. Therefore, TMR of H2O2 was calculated to be 70 min for runaway reaction (after T0) and TMR of H2O2/propanone was discovered to be 27 min only. Fire and explosion hazards could be successfully lessened if the safety-related data are properly imbedded into manufacturing processes.  相似文献   

20.
Explosibility of micron- and nano-titanium was determined and compared according to explosion severity and likelihood using standard dust explosion equipment. ASTM methods were followed using a Siwek 20-L explosion chamber, MIKE 3 apparatus and BAM oven. The explosibility parameters investigated for both size ranges of titanium include explosion severity (maximum explosion pressure (Pmax) and size-normalized maximum rate of pressure rise (KSt)) and explosion likelihood (minimum explosible concentration (MEC), minimum ignition energy (MIE) and minimum ignition temperature (MIT)). Titanium particle sizes were ?100 mesh (<150 μm), ?325 mesh (<45 μm), ≤20 μm, 150 nm, 60–80 nm, and 40–60 nm. The results show a significant increase in explosion severity as the particle size decreases from ?100 mesh with an apparent plateau being reached at ?325 mesh and ≤20 μm. Micron-size explosion severity could not be compared with that for nano-titanium due to pre-ignition of the nano-powder in the 20-L chamber. The likelihood of an explosion increases significantly as the particle size decreases into the nano range. Nano-titanium is very sensitive and can self-ignite under the appropriate conditions. The explosive properties of the nano-titanium can be suppressed by adding nano-titanium dioxide to the dust mixture. Safety precautions and procedures for the nano-titanium are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号