首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A methodology for estimating the blast wave overpressure decay in air produced by a gas explosion in a closed-ended tunnel is proposed based on numerical simulations. The influence of the tunnel wall roughness is taken into account in studying a methane/air mixture explosion and the subsequent propagation of the resulting shock wave in air. The pressure time-history is obtained at different axial locations in the tunnel outside the methane/air mixture. If the shock overpressure at two, or more locations, is known, the value at other locations can be determined according to a simple power law. The study demonstrates the accuracy of the proposed methodology to estimate the overpressure change with distance for shock waves in air produced by methane/air mixture explosions. The methodology is applied to experimental data in order to validate the approach.  相似文献   

2.
High temperature flame fronts generated in methane–air explosions are one of the major hazards in underground coal mines. However, the distribution laws of the flame region in explosions of this type and the factors influencing such explosions have rarely been studied. In this work, the commercial software package AutoReaGas, a finite-volume computational code for fluid dynamics suitable for gas explosion and blast problems, was used to carry out numerical simulations of a series of methane–air explosion processes for various initial premixed methane–air regions and cross-sectional areas in full-scale coal tunnels. Based on the simulated results and related experiments, the mechanism of flame propagation beyond the initial premixed methane–air region and the main factors influencing the flame region were analyzed. The precursor shock wave and turbulence disturb the initial unburned methane–air mixture and the pure air in front of the flame. The pure air and unburned mixture subsequently move backward along the axial direction and mix partially. The enlargement of the region containing methane induces that the range of the methane–air flame greatly exceeds the initial premixed methane–air region. The flame speed beyond the initial region is nonzero but appreciably lower than that in the original premixed methane–air region. The length of the initial premixed methane–air region has substantial influence on the size of the flame region, with the latter increasing exponentially as the former increases. For realistic coal tunnels, the cross-sectional tunnel area is not an important influencing factor in the flame region. These conclusions provide a theoretical framework in which to analyze accident causes and effectively mitigate loss arising from the repetition of similar accidents.  相似文献   

3.
So far, the prediction of blast wave generated from the Boiling Liquid Expanding Vapour Explosion (BLEVE) has been already broadly investigated. However, only a few validations of these blast wave prediction models have been made, and some well-established methods are available to predict BLEVE overpressure in the open space only. This paper presents numerical study on the estimation of the near-field and far-field blast waves from BLEVEs. The scale effect is taken into account by conducting two different scale BLEVE simulations. The expansion of pressurized vapour and evaporation of liquid in BLEVE are both modelled by using CFD method. Two approaches are proposed to determine the initial pressure of BLEVE source. The vapour evaporation and liquid flashing are simulated separately in these two approaches. Satisfactory agreement between the CFD simulation results and experimental data is achieved. With the validated CFD model, the results predicted by the proposed approaches can be used to predict explosion loads for better assessment of explosion effects on structures.  相似文献   

4.
Structures may be exposed to fire and blast due to accidents (i.e. explosion of flammable gas in industrial structures) or terrorist attacks during the service life. Performances of RC structures subjected to extreme conditions of fire and blast, thus, have drawn much attention from academia. In this paper, the coupling effect of high temperature and high strain rate in concrete was firstly studied based on the experimental data to improve the damage plasticity concrete model in ABAQUS. Secondly, the transient heat transfer effects in different fire scenarios and following fire resistances of RC columns with constant axial forces were numerically investigated on the basis of the improved concrete model, which are validated by the corresponding test data, and the residual axial loading capacity of RC columns was quantitatively calculated. By incorporating the different merits of implicit algorithm applied to heat transfer analyses and explicit algorithm usually used in blast analyses, a numerical approach to analyze the responses of RC columns subjected to the coupling loadings of fire and blast was finally developed. Mid-span displacements and damage of the RC columns subjected to fire and explosions were quantitatively calculated and discussed. The proposed approach was demonstrated to be effective in predicting the responses of RC structures subjected to coupling loadings of fire and blast.  相似文献   

5.
Explosions often lead to destruction of equipment, which is a difficult problem including complicated fluid-solid interactions. Most traditional CFD methods cannot synchronously solve the movements of fluids and large deformation and fracture of solids because such problem is usually accompanied with constantly moving-and-changing boundary conditions. In this paper, a coupled Finite Element Method-Smoothed Particle Hydrodynamics (FEM-SPH) method was proposed to simulate the dynamic processes of explosions in pipes. The propagation of blast wave and the fracture of pipe were captured in every timestep, where the energy dissipation caused by plastic deformation and crack propagation were fully considered. A rate-dependent failure criterion for high-strain-rate load conditions was employed in the numerical simulation, which was presented in our previous work and has been verified in the dynamic fracture behavior of steels for pressure vessels and pipes. In addition, a simpler formula was proposed to describe the attenuation of blast wave outside the pipe and the consequences caused by the explosions were assessed. Results revealed the interaction between blast wave and pipe, the leakage of detonation products, the attenuations of peak overpressures outside the pipe and the corresponding consequences at different distances. It is found that when considering the energy consumption during plastic deformation and crack propagation in coupled FEM-SPH method, the assessment results are more rational than that without considering such energy consumption.  相似文献   

6.
This paper aims at contributing to the efficient design of explosion protection systems against confined explosions. The issue addressed concerns the quantitative estimation of the protective effect of explosion relief vents in the case of confined explosions inside tunnels. A series of virtual experiments performed by computer simulation, revealed how the number of vents, their diameter, as well as the angle between the vents and the tunnel, influences the blast wave attenuation. The computational study was performed considering a complicated large-scale tunnel configuration with branches on its half portion. The purpose was the calculation of the attenuation effect due to the presence of vents by comparing the total explosion-specific impulse developing at antidiametric positions inside the tunnel. Simulations were carried out via a three-dimensional numerical model built in the computational fluid dynamics code CFX 5.7.1, which has been validated in previous papers against experimental overpressure histories data demonstrating reasonable performance. Computer results showed that the use of branch vents provides an effective method for shock wave attenuation following an explosion, whereas their statistical elaboration revealed that the attenuation is mainly affected by the number of vents and their diameter. In contrast, the angle between the side vents and the main tunnel appeared to slightly affect the pressure wave weakening. Eventually, the quantitative influence of the above parameters was effectively illustrated in functional diagrams, so that the total attenuation effect may be promptly estimated, if the design variables are known. In addition, two statistical models with reasonable fitting to the calculated data are proposed, which express the attenuation effect as a dependent variable of the design variables including their interactions.  相似文献   

7.
爆炸冲击波在建筑群中传播规律的数值模拟研究   总被引:2,自引:0,他引:2  
为了研究建筑群的布局特性对爆炸冲击波传播的干扰作用及爆炸对周围环境的影响,笔者基于任意拉格朗日多物质流固耦合算法,对空气采用ALE网格,爆轰产物采用JWL状态方程,利用LS-DYNA程序对TNT理想爆炸源的爆炸进行了数值模拟,并与经验公式的计算结果进行了对比,得出了数值模拟方法可行的结论。在该基础上,以一个建筑小区为例,对其遭受爆炸后的响应作了进一步模拟研究。结果表明,建筑物的密度和布局方式对爆炸场的数值与形态都有敏感作用,因此,在城市规划建筑布局阶段,应考虑建筑密度和布局对爆炸冲击波的影响。  相似文献   

8.
在进行工程爆破时,爆破所产生的飞石、振动、空气冲击波、噪音和毒气是公认的爆破公害,尤其是振动和飞石在爆破过程中是不可避免的危害.针对在实际工程中,由于爆破冲击波造成的人员伤害和设备的损害以及引起该事故发生的危险因素,采用事故树分析方法得到影响顶事件的最小割集,通过计算基本事件的结构重要度,确定了影响爆破冲击波事故的主要因素,并提出相应的安全措施,对降低爆破冲击波效应的影响以及降低露天爆破安全事故有重要意义.  相似文献   

9.
The definition of blast loads applying on a complex geometry structure is still nowadays a hard task when numerical simulations are used, essentially because of the different scales involved: as a matter of fact, modelling the detonation of a charge and its resulting load on a structure requires to model the charge itself, the structure and air surrounding, which rapidly leads to large size models on which parametrical studies become unaffordable. So, on the basis of the Crank–Hopkinson’s law, an experimental set-up has been developed to support reduced scale structures as well as reduced scale detonating solid charges. As a final objective, the set-up must be used to produce the entry data for numerical assessments of the structure resistance.This set-up is composed of a modular table, sensors and targets and has been designed to conduct non-destructive studies. In the context of security, the general aim is to study the effects of detonation shock waves in the vicinity of facility buildings and to test various shock wave mitigation means that could be implemented for the protection of facilities in sensitive locations. Especially, the set-up offers the possibility to measure the loading in terms of pressure-time curves, even for very complex situations like multiple reflections, combination and diffraction.The present paper summarizes the development of the set-up as well as the first tests performed. The main features of the table, the instrumentation and the pyrotechnics are given. Also the paper summarizes a first qualification tests campaign that has been conducted. In this campaign, free-field blast tests (i.e. blast tests performed without structures) have been conducted. Overpressure maxima, arrival time of the shock wave and impulse are presented as non-dimensional characteristics of the pressure-time history. The results obtained have been found in good agreement with reference curves available from the open literature and numerical model results.  相似文献   

10.
This paper presents a simulation analysis of the explosions following an LPG leak and visualizes the consequences of the accident to reduce the consequences of the LPG leak explosion. Firstly, this paper proposes a CFD numerical simulation-based method for visualizing the consequences of LPG tanker failure. The method combines satellite maps and CFD numerical simulation data to visualize the consequences of LPG leaks and explosions, taking into account the influence of obstacles on the danger range of leaks and explosions; Secondly, this paper applies the method to a liquefied petroleum gas accident that occurred in the Wenling section of the Shenhai Expressway and performs CFD numerical simulation on the accident process and visualizes the consequences of the accident. Therefore, this method can provide a theoretical reference for the prior prevention of LPG accidents and the analysis of the consequences of accidents, as well as certain practical guidance instructive.  相似文献   

11.
Several different data correlations have been developed for the external pressures associated with vented gas explosions and dust explosions. These correlations, which are applicable to external locations in the direct line-of-sight of the enclosure vent, are reviewed here. In addition, the application of spherically symmetric and of ellipsoidal blast wave models is explored as a possible means of calculating external pressures over a wider range of conditions than is possible with the existing data correlations. Results indicate that the spherically symmetric blast wave model can obtain a comparable accuracy (8–9 kPa standard deviation) for line-of-sight locations as the more recent data correlations. In the case of the lower blast pressures at locations perpendicular to the vent line-of-sight, the ellipsoidal blast wave provides significantly better agreement with data (to within 1 kPa standard deviation for the one set of available test data) than the spherically symmetric model.  相似文献   

12.
Blast wave and fragment are two main types of physical damage effects representing a significant threat to storage tank structures in chemical industrial parks. Compared with the effect of only blast wave or fragment, the coupling effect of them may cause more severe consequences and is worthy of study. A numerical study of the dynamic responses and damage of a vertical storage tank subjected to the coupling effect of blast wave and fragment is conducted based on a typical accident. The simulation results reveal that stress-concentration and rapid increase of the stress exist in the impacted region of the storage tank under the coupling effect, which leads to the structural damage of the tank exhibiting different failure modes. The coupling effect is significantly apparent following a dramatic increase of the plastic strain, and the damage of the storage tank is further aggravated. From the displacement response and energy absorption, the overall damage of the storage tank subjected to the coupling effect is more severe than that caused by blast wave and fragment separately, which also indicates that the coupling effect is an enhanced damage effect. Besides, the contribution of blast wave and fragment to the coupling effect depends on scaled distance. The results of the study help reveal the coupling effect of blast wave and fragment and prevent domino accidents caused by the coupling effect.  相似文献   

13.
A laneway support system provides an available way to solve problems related to ground movements in underground coal mines, but also poses another potential hazard. Once a methane/air explosion occurs in a laneway, inappropriate design parameters of the support system, especially the support spacing, likely have a negative influence on explosion disaster effects. The commercial software package AutoReaGas, a computational fluid dynamics code suitable for gas explosions, was used to carry out the numerical investigation for the methane/air explosion and blast process in a straight laneway with different support spacing. The validity of the numerical method was verified by the methane/air explosion experiment in a steel tube. Laneway supports can promote the development of turbulence and explosion, and also inhibit the propagation of flame and shock wave. For the design parameters in actual laneway projects, the fluid dynamic drag due to the laneway support plays a predominant role in a methane/air explosion. There is an uneven distribution of the peak overpressure on the same cross section in the laneway, and the largest overpressure is near the laneway walls. Different support spacing can cause obvious differences for the distributions of the shock wave overpressure and impulse. Under comparable conditions, the greater destructive effects of explosion shock wave are seen for the laneway support system with larger spacing. The results presented in this work provide a theoretical basis for the optimized design of the support system in coal laneways and the related safety assessments.  相似文献   

14.
This paper presents a new methodology for estimating the probable number of fatalities in accidental explosions in fixed installations, as a function of the amount of the flammable substance involved. A review of the procedure proposed by Marshall (1977) (Marshall, V.C., 1977 How lethal are explosions and toxic escapes? The Chemical Engineer, August 1977, 573–577). reveals its limitations, given the great dispersion of ungrouped data. The proposed alternative enables the estimation of the maximum probable number of fatalities and the percentage of cases in which a certain number of fatalities is reached, based on the knowledge of the amount of material presumably involved and through the application of the historical analysis of accidents. It must be pointed out that the proposed method considers not only fatalities derived directly from the overpressure wave but also those due to thermal radiation or missile impact.  相似文献   

15.
Elongated congestion patterns are common at chemical processing and petroleum refining facilities due to the arrangement of processing units. The accidental vapor cloud explosion (VCE) which occurred at the Buncefield, UK facility involved an elongated congested volume formed by the trees and undergrowth along the site boundary. Although elongated congested volumes are common, there have been few evaluations reported for the blast loads produced by elongated VCEs. Standard VCE blast load prediction techniques do not directly consider the impact of this congested volume geometry versus a more compact geometry.This paper discusses an evaluation performed to characterize the blast loads from elongated VCEs and to identify some significant differences in the resulting blast wave shape versus those predicted by well-known VCE blast load methodologies (e.g., BST and TNO MEM). The standard blast curves are based on an assumption that the portion of the flammable gas cloud participating in the VCE is hemispherical and located at grade level. The results of this evaluation showed that the blast wave shape for an elongated VCE in the near-field along the long-axis direction is similar to that for an acoustic wave generated in hemispherical VCEs with a low flame speed. Like an acoustic wave, an elongated VCE blast wave has a very quick transition from the positive phase peak pressure to the negative phase peak pressure, relative to the positive phase duration. The magnitude of the applied negative pressure on a building face depends strongly on the transition time between the positive and negative phase peak pressures, and this applied negative phase can be important to structural response under certain conditions. The main purpose of this evaluation was to extend previous work in order to investigate how an elongated VCE geometry impacts the resultant blast wave shape in the near-field. The influence of the normalized flame travel distance and the flame speed on the blast wave shape was examined. Deflagration and deflagration-to-detonation transition regimes were also identified for unconfined elongated VCEs as a function of the normalized flame travel distance and flame speed attained at a specified flame travel distance.  相似文献   

16.
Explosion experiments using premixed gas in a duct have become a significant method of investigating methane-air explosions in underground coal mines. The duct sizes are far less than that of an actual mine gallery. Whether the experimental results in a duct are applicable to analyze a methane-air explosion in a practical mine gallery needed to be investigated. This issue involves the effects of scale on a gas explosion and its shockwave in a constrained space. The commercial software package AutoReaGas, a finite element computational fluid dynamics (CFD) code suitable for gas explosions and blast problems, was used to carry out the numerical simulation for the explosion processes of a methane-air mixture in the gallery (or duct) at various scales. Based on the numerical simulation and its analysis, the effect of scale on the degree of correlation with the real situation was studied for a methane-air explosion and its shockwave in a square section gallery (or duct). This study shows that the explosion process of the methane-air mixture relates to the scales of the gallery or duct. The effect of scale decreases gradually with the distance from the space containing the methane-air mixture and the air shock wave propagation conforms approximately to the geometric similarity law in the far field where the scaled distance (ratio of the propagation distance and the height (or width) of the gallery section) is over 80.  相似文献   

17.
In recent decades, vapor cloud explosions (VCEs) have occurred frequently and resulted in numerous personnel injuries and large property losses. As a main concern in the petrochemical industry, it is of great importance to assess the consequence of VCEs. Currently, the TNT equivalency method (TNT EM), the TNO multi-energy method (TNO MEM), and the Baker-Strehlow-Tang (BST) method are widely used to estimate the blast load from VCEs. The TNO MEM and BST method determine the blast load from blast curves based on the class number and the flame speed, respectively. To quantitatively evaluate the flame speed for the BST method, the experimental data is adopted to validate the confinement specific correlation (CSC) for the determination of the class number in the TNO MEM. As a bridge, a quantitative evaluation correlation (QEC) between CSC correlation and the flame speed is established and the blast wave shapes corresponding to different flame speeds are proposed. CFD software FLACS was used to verify the quantitative correlation with the numerical models of three geometrical scales. It is found that the calculated flame speeds by the QEC are in good agreement with the simulated ones. A petrochemical plant is selected as a realistic scenario to analyze the TNT EM, TNO MEM, BST method and FLACS simulations in terms of the positive-phase side-on overpressure and impulse at different distances. Compared with the flame speed table, the predicted overpressure from BST curves determined by the proposed QEC is closer to that from FLACS and more conservative. Furthermore, the predicted results of different methods are compared with each other. It is found that the estimated positive-phase side-on overpressure and impulse by the TNO MEM are the largest, and the estimated impulse by the TNT EM is the smallest. Moreover, the estimated overpressure and impulse are larger in the higher reactivity gas.  相似文献   

18.
隧道工程爆破施工引起衬砌结构以及地表建筑物破坏时有发生,研究隧道工程爆破振动效应以及安全性评价方法,对确保隧道工程施工安全十分重要。基于三维动力有限元分析方法,以某城市双连拱隧道工程爆破施工为例,探讨爆炸冲击荷载作用下隧道围岩介质动力响应特征。研究表明,爆破冲击对周围介质的影响具有时间滞后和累积损伤效应,只考虑爆破瞬时最大振动波速对围岩介质以及地表建筑物的影响不能真实反映爆破影响的实质。同时结合具体工程对地表建筑物爆破安全评价方法进行分析研究,建议将现代数值分析方法应用于复杂条件下隧道爆破安全性评价工作。  相似文献   

19.
钢筋混凝土梁在火侵袭下的反应分析   总被引:5,自引:2,他引:5  
结构物在大火侵袭下,结构内部温度和结构挠度、内力将随时间发生不断变化,这种变化极为复杂。本文在试验研究的基础上,采用非线性有限元法,着重研究钢筋混凝土梁在火侵袭作用下其温度和挠度的反应,提出了一种理论分析方法,编制了计算机程序,对钢筋混凝土梁的温度、挠度和内力的反应进行了计算,并得到试验结果的验证。  相似文献   

20.
A series of small-scale experiments involving physical explosions in a 1.6 l pressure vessel was carried out. Explosions were initiated by spontaneous rupture of an aluminium membrane on one side of the vessel at a pressure in the range 1–1.2 MPa. The pressure waves released were measured at different distances along two separate shock tubes, one 10 m long and 200 mm in diameter (closed at one end by the high pressure vessel) and the other 15 m long and 100 mm in diameter.TNT equivalency was used for predicting the blast wave characteristics after vessel rupture. TNT equivalency was used because equations for prediction of peak pressure and impulse of the blast wave in 1-D geometry after detonations of condensed explosives are known. Some experiments with an equivalent amount of real explosive were carried out for comparison with the theoretical and experimental data obtained. The applicability of the TNT equivalency method presented for calculations of maximum pressure and shock wave impulse generated after rupture of the pressure vessel in 1-D geometry is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号