首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
为探究公路隧道不同受限程度火灾的适宜纵向通风风速,基于FDS模拟分析5种纵向通风速度下不同近壁距离火源顶棚下方烟气最高温度的分布特性、烟羽流倾角及烟气分层状况,提出合理纵向通风风速范围。研究结果表明:在隧道中心线上近火源下游,顶棚下方的最高温度沿纵向均呈指数衰减。不同贴壁距离和纵向通风风速下,均出现烟气分岔流动,随着贴壁距离减小羽流撞击处温升、火羽流偏移角显著增加。当风速小于1.6 m/s时,火源上游出现大量高温烟气回流;而当风速超过2.4 m/s时,分岔流动现象越明显,各偏移角变小,火源下游逐渐后移的烟气层严重失稳。因此,不同受限程度下火灾合理纵向风速为1.6~2.4 m/s。  相似文献   

2.
为探究分岔隧道烟气流动特性,采用CFD数值仿真技术,选取3个火源位置、5个热释放速率,模拟分析顶棚最大温升、主隧道及岔道内顶棚下方温度纵向衰减规律。结果表明:火源位置对顶棚下火源正上方最大温度影响较小,最大温差约为34 ℃,但对火源附近温度影响较大,其中距火源0.5 m处最大温差约为110 ℃;通过对比Hu等和Gong等的预测模型在岔道内顶棚下温度纵向衰减上的拟合曲线可知,Gong等的模型准确性更高;主隧道内上、下游顶棚下温度纵向衰减呈现出不同程度的“反超现象”,且随火源位置逐渐移向岔道内时,“反超现象”逐渐滞后。  相似文献   

3.
为研究矿井大坡度纵向通风倾斜巷道发生火灾时烟气蔓延特征,采用Pyrosim数值模拟方法,分析坡度为5~30°的巷道火灾顶棚烟气最高温度和纵向衰减特性;提出坡度修正系数,构建一种适合坡度大于10°的巷道顶棚烟气最高温度预测模型。研究表明:随着巷道坡度增大,顶棚烟气最高温度下降,但烟气层垂直方向温升梯度减小,高温烟气充满近火源巷道。火源下风侧顶棚烟气温度衰减服从双指数函数和分布特征;大坡度巷道火源下风侧纵向温度可以分成2个区域,当无量纲纵向距离x/H小于5时,随着巷道坡度的增大,烟气温度随距离增加而降低; x/H大于5时,坡度大于10°时,坡度越大,烟气温度越高;坡度在10°以内,坡度越大,温度越低。  相似文献   

4.
为了更有效地防控综合管廊电缆桥架火灾,在全尺寸综合管廊中开展了电缆桥架火灾试验,系统研究了电缆层数和卷吸条件对电缆桥架火灾烟气温度分布的影响。在电缆桥架附近垂直和水平布置一系列热电偶,分别用于测量管廊内垂直和顶棚水平温度分布。基于管廊内的垂直温度分布,揭示了火灾场景下管廊垂直温度分层规律。结果表明,管廊内发生电缆桥架火灾时,管廊内从上往下可以分为三部分:顶部射流层、中间热烟气过渡层和下部冷空气层。通过分析管廊不同端口的顶棚横向温度分布,发现顶棚温度在半封闭端的衰减速度比全封闭端更快,建立了考虑热释放速率和火源距离顶棚距离的全封闭端顶棚下方无量纲纵向温度分布模型。最后根据卷吸条件与顶棚最大温升的对应关系,发现整体火源功率越大的电缆桥架火灾受到侧壁和端壁的热反馈影响越强烈,针对不同卷吸条件下的电缆桥架火灾分别建立了顶棚最大温升预测模型。通过将模型预测值与试验值对比,发现模型误差在16%以内。  相似文献   

5.
为研究城市公路隧道内纵向通风和障碍物对双火羽流行为的影响,采用数值模拟方法分析双火羽流纵向烟气温度变化规律。研究结果表明:随着风速的增加,顶棚下方最高温度不断降低,烟气逆流现象逐渐减弱至消失;随着阻塞比的增加,下游火源一直向下游倾斜,而上游火源逐渐由向下游倾斜转变为向上游倾斜;基于流体力学理论,引入阻塞比修正无障碍物时的弗劳德数,进而建立适用于隧道内有障碍物的双火羽流顶棚最高温升分段预测模型,研究结果可为隧道火灾防治提供基础数据和理论参考。  相似文献   

6.
隧道结构对火灾具有一定的影响,为了得到大曲率、变坡度复杂结构隧道火灾的烟气特性,依托深圳市某长大公路隧道建设工程,建立隧道模型,利用Star-CD/CCM^+数值模拟软件的烟火向导模块,对不同通风速度下的重型货车火灾进行了模拟研究,分析了不同通风速度下隧道内的纵向温度分布规律。结果表明:火灾热释放速率为30 M W时,无通风条件下,火灾烟气的最高温度位于隧道顶棚下方20 cm处,火源正上方的温度最大达到1190℃,隧道坡度的存在使得火源上游烟气逐渐向下游扩散,下游烟气温度在300 s后保持在500℃以上,该高温会对隧道结构造成一定的损伤;控制烟气逆流的临界风速为4.0 m/s,大于由Wu&Baker经验公式得到的值.表明隧道曲率对流场运动有一定的抑制作用;在该临界风速的作用下,烟气向火源下游扩散,扩散速度为6 m/S,烟气的最高温度降低至550℃,且位置向火源下游偏移6 m。建议火源下游行驶车辆的疏散逃生速度大于6m/s。  相似文献   

7.
为解决低真空隧道内高速列车运营时,火灾突发事件中出现的危险性、列车结构的完整性及人员安全等问题,以低真空隧道内的高速列车车厢为研究对象,首先用数值模拟的方法,探究着火车厢内部发生火灾后的温度衰减特征;然后分析相邻车厢内部的温度分布情况;最后研究着火车厢内部最大温度的分布特征。结果表明:着火车厢及相邻车厢顶棚处沿着纵向的温度呈指数形式衰减;相邻车厢内,功率对温度衰减影响较大,即:低火源功率(0.3~0.6 MW)下,高温烟气蔓延相对较弱,相邻车厢内乘客相对安全;中火源功率(0.7~1.1 MW)下,高温烟气蔓延显著,由于受到车厢壁面以及车门的影响出现温度突变点;高火源功率(1.2~1.5 MW)下,热羽流强度较高,高温烟气蔓延受车厢壁面以及车门的影响相对较小,在车厢连接部分与相邻车厢内的高温蔓延趋势基本一致。车厢内的最大温度与火源功率及火源至顶棚的距离有关,并存在线性关系。  相似文献   

8.
为了研究地铁同站台高架换乘车站台火灾情况,通过在某同站台高架换乘车站的大空间站台层区域开展0.25~1 MW规模的现场火灾实验,对烟气温度、烟气层高度和烟气蔓延时间进行分析,并建立了该类型车站站台区域顶棚烟气分布和烟气扩散时间的经验模型。研究结果表明:站台不同高度顶棚下方烟气温度呈指数分布趋势,且温度衰减速率随火源功率的增加而降低;受火源位置、顶棚结构和自然排烟的影响,站台层不同部位的烟气层高度有所差异,起火站台的烟气层高度在火源附近较高,在纵向方向呈逐渐降低的趋势,未起火站台火源断面位置处的烟气层高度较低,在纵向方向呈逐渐升高的趋势,现场应急救援和客流疏散中应充分重视未起火站台的危险性,同时防排烟设计应尽可能提高站台顶部排烟口总面积以降低烟气在扩散过程中的质量流量;烟气蔓延时间受火源功率的影响较大,在纵向方向与扩散距离呈线性增长趋势,随着火源功率的增加,烟气扩散速度逐渐升高,在0.25,0.5和1 MW的火灾规模下烟气扩散速度分别为0.33~0.4,0.41~0.43和0.45~0.81 m/s。  相似文献   

9.
选取某城市L型综合管廊电缆舱为研究对象,采用FDS数值模拟软件研究了不同火源位置对L型管廊电缆火灾温度纵向衰减规律、烟气浓度分布规律及烟气危害性的影响。研究结果表明,L型廊道构型影响了不同火源位置的管廊电缆火灾最高温度纵向衰减的连续性,基于热边界层理论提出了适用于L型管廊的二维平面最高温度纵向衰减模型。基于峰宽时间计算了L型管廊火灾的烟气总危害性参数,不同火源位置的烟气危害性总在靠近管廊节点位置处最低。这些结果可对综合管廊的消防设计与火灾防控提供参考。  相似文献   

10.
隧道顶板下方烟气的最高温度对隧道防火设计有重要影响。采用FDS对人字坡隧道下游坡度为0、-3%、-5%、-8%、-10%、-12%、-15%等场景进行模拟分析,以探讨人字坡隧道内的烟气分布规律,得出顶板下方最高温度沿程衰减与隧道坡度、火源功率之间的关系。结果表明,随隧道下游坡度增加,上游烟气蔓延速率加快。当燃烧处于稳定状态时,人字坡隧道两端的烟气层始终与水平地面平行,与隧道两端的坡度无关;随隧道下游坡度增加,人字坡隧道的最高温度逐渐增加,其温度明显高于单坡度隧道的温度;当坡度达10%时,温度不再受坡度影响。对数值模拟的数据进行拟合,得出最高温度沿长度方向呈指数衰减,与火源功率呈3/4次方关系,进而建立了最高温度变化的预测模型。  相似文献   

11.
研究了燃烧风洞内不同纵向风速、不同火源功率条件下,隧道近火源区顶部温度沿纵向分布情况。结果表明,纵向风对不同尺寸火源条件下的顶部温度的影响呈不同特征。对较小尺寸火源,隧道顶部温升随风速增加而减小至稳定值;而对较大尺寸火源,顶部温升随风速增加先增加后减小。对于矩形火源,当纵向风较小(0.5~1.5m/s)时,长边平行于纵向风时顶部最高温升大于长边垂直于纵向风的情况;而当纵向风较大(≥2 m/s)时,两种油盘放置方式的顶部最高温升一致。纵向风作用下,顶部最高温升位置向下游呈现"两次移动"特征,即随着纵向风速增加该位置先向下游移动,当风速达到某一值时,隧道拱顶的加热机制由对流和辐射共同主控转变为辐射单独主控,最高温升位置突变回到上游后再次逐渐向下游移动。  相似文献   

12.
为对近火源区长度进行研究,以城市公路隧道为研究对象,采用理论分析与数值模型相结合的方法,探究了大火源功率、有效顶棚高度和火源横向位置对近火源区长度的影响,对36个工况的数值模拟和温度场变化规律的研究与分析。结果表明:火焰未撞击顶棚时,火源功率对近火源区长度几乎没有影响;当火焰持续撞击顶棚并形成水平扩展火焰时,近火源区长度受火源功率和有效顶棚高度影响较大,其无量纲形式与无量纲火源功率的2/3次方呈线性关系;随着火源与侧壁距离的减小,近火源区长度呈自然指数增加趋势;火源贴壁时,近火源区长度是火源位于隧道中部时的1.866倍;提出了近火源区长度预测模型,基本揭示了烟气由过渡阶段转入一维蔓延阶段起始位置的变化规律,能够为定量研究各阶段烟气流动特性提供参考依据。  相似文献   

13.
为探究巷/隧道火灾热动力灾害的演化规律,基于能量守恒定律和热量转换关系,建立巷/隧道火灾风烟流温度演化的预测模型;考虑巷道分叉和汇合对烟气蔓延和温度的影响,构建分叉和汇合巷道内烟流温度随时间变化的演化模型。通过开展全尺寸巷道火灾实验以及与国内典型隧道火灾试验数据对比,对理论模型进行验证。研究结果表明:理论模型所呈现的烟气温度随时间的变化关系,能较好地反映火灾发展的3个阶段,烟气温度的变化趋势符合火灾火源燃烧特性曲线;理论模型能够准确地预测顶棚最大烟气温升以及温度纵向衰减现象,烟气最高温度预测值与实验结果的误差率在15%以内。研究结果可为巷/隧道火灾时期的烟气控制和救援提供理论参考。  相似文献   

14.
为了研究不同火源条件下变压器火灾动力学过程,利用全尺寸变压器火灾试验,验证了隐蔽、立体、多尺度的变压器火灾数值模拟的有效性,模拟5,10,15,18 MW火源功率下变压器室内火灾烟气蔓延、温度分布变化。研究结果表明:火源功率对烟气蔓延速度和温度分布影响较大,当火源功率在18 MW以内时,变压器油燃烧时间在30 s内,产生的热均不会使变压器室内壁面和顶棚处的烟气温度超过300 ℃,没有达到混凝土的耐火极限。  相似文献   

15.
为研究含坡度隧道不同火源位置情况下车厢火灾烟气蔓延特性,采用CFD数值模拟方法,建立全尺寸地铁隧道与列车数值模型,研究车厢不同火源位置情况下火灾烟气纵向温度分布规律,探讨倾斜隧道车厢火源位置对烟气蔓延的影响。研究结果表明:当火灾烟气蔓延处于纵向通风惯性力与热浮力竞争作用控制阶段时,火源位于车厢上游方向时火灾烟气向车厢方向蔓延距离小于火源位于车厢下游方向情况,且随坡度增大,火源位于车厢上游方向烟气逆流长度不断减小,位于下游方向烟气逆流长度不断增大;当纵向通风风速达到2 m/s时,火源位于车厢上下游方向2种情况下,列车车厢方向均无烟气蔓延(逆流长度为0),此时火灾烟气蔓延将主要由纵向通风控制,隧道坡度无显著影响。  相似文献   

16.
为探究平行换乘车站火灾烟气扩散特性及排烟优化模式,利用1∶10地铁换乘车站模型,在公共站厅、站台、单洞单线隧道、单洞双线隧道中设计多种火灾场景,分析各区域内的顶棚温度分布情况。结果表明:公共站厅不同位置发生火灾时,各区域内的烟气蔓延特性和通风排烟效果不同;站台火灾时,打开屏蔽门能增大补风量,延缓火源上方的升温过程,降低站台内部温升,并且在联合站台及两侧隧道排烟时仅开启火源附近6个屏蔽门有利于提高排烟效率;单洞单线隧道火灾时烟气温度相对较高,单洞双线隧道火灾时,近火源区域内起火隧道和未起火隧道的烟气分布特性不同,烟气可通过打开的屏蔽门蔓延至临近站台,开启隧道排烟及站台送风后能有效减小温升幅度和烟气扩散范围。实验结果可为平行换乘车站中的火灾烟气通风控制方案提供数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号