首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
为准确预测瓦斯涌出量,选取某煤矿的开采煤层、临近煤层、采空区3个瓦斯涌出源作为实例研究,将BP神经网络、粒子群算法(PSO)、Ada Boost迭代提升算法和瓦斯涌出分源预测法相结合,建立基于PSOBP-Ada Boost算法的瓦斯涌出量分源预测模型,并将其与BP神经网络算法进行比较分析。结果表明,PSOBP-Ada Boost算法预测的3个瓦斯涌出源平均相对误差分别为3.24%,2.11%,3.21%;BP神经网络的平均相对误差分别为6.73%,3.19%,4.27%,基于PSOBP-Ada Boost模型的预测精度明显优于BP神经网络模型。  相似文献   

2.
为提高油田集输管道CO2腐蚀速率预测的准确性,针对原始广义回归神经网络(GRNN)预测精度低的问题,提出改进的群智能算法优化原始GRNN的预测模型;分别使用GRNN模型、人工鱼群算法(AFSA)优化的GRNN(AFSA-GRNN)模型和自适应改进的AFSA-GRNN(IAFSA-GRNN)模型预测X65管线钢的CO2腐蚀速率。结果表明:采用AFSA和IAFSA优化光滑因子S后,能大大提高GRNN模型的预测精度,预测结果的平均相对误差由36.09%分别减小至7.20%和6.90%;与AFSA相比,IAFSA优化的GRNN不仅具有更高的预测精度,还具有更快的收敛速度。AFSA-GRNN在第164次迭代计算时收敛,而IAFSA-GRNN在第109次迭代计算时收敛,说明AFSA经自适应优化能提高优化过程的收敛速度和GRNN的预测精度。  相似文献   

3.
针对尾矿库运行过程中安全预警问题,选取2015年巴西Samarco铁矿溃坝事故案例,研究BP神经网络和SVR方法在排水数据预测的适用性。综合分析了排水数据的复杂且非线性的特点,以库水位、降雨量和干滩长度为输入特征,采用上述2个模型对尾矿坝排水数据进行预测。研究结果表明:基于BP神经网络预测结果的最大相对误差不高于4.35%;基于SVR算法的最大相对误差不高于9.21%;Fundo坝的排水预测结果是可行的,BP神经网络的预测精度更高,而SVR模型的运算速度更快。研究结果可为矿山安全工作的快速响应和溃坝预警提供信息支撑和参考依据。  相似文献   

4.
为提高煤层瓦斯含量预测的效率和准确率,提出了先采用主成份分析(PCA)方法来降低变量间的相关性,然后将遗传算法(GA)与BP神经网络相结合的煤层瓦斯含量预测的新方法。为了避免BP神经网络收敛速度慢、易陷入局部极小值等问题,算法采用GA对BP神经网络的权值和阈值进行优化,利用Matlab软件进行编程,建立了BP神经网络和GA-BP神经网络瓦斯含量预测模型。选取淮南某矿瓦斯含量及其影响因素作为实验数据对该模型进行了实例分析,将主成份回归和BP网络算法预测结果与该模型进行了对比分析。结果表明:PCA-GA-BP网络预测模型平均相对误差为2.759%,预测效果明显优于主成份回归和BP网络预测模型,可以准确的预测煤层瓦斯含量。  相似文献   

5.
为防治矿井热害,针对矿井井底风温在预测过程中精度较低的问题,提出1种网格搜索法结合K折交叉验证优化XGBoost的预测模型。通过分析确定影响井底风温的主要因素,使用网格搜索算法结合K折交叉验证,进行迭代缩小搜索范围并调参,选取最优参数配置,实现对XGBoost模型的优化,得到预测结果并与其他模型进行比较。研究结果表明:初始参数经优化后,当最大回归树深度为3且学习速率为0.1时,XGBoost回归模型性能最佳,与随机森林模型、BP神经网络模型、T-S模糊神经网络模型相比,平均相对误差分别降低了2.12%,0.88%,0.3%,均方根误差分别降低了0.66,0.24,0.11 ℃。  相似文献   

6.
在煤矿瓦斯灾害中,煤矿瓦斯突出是导致瓦斯重特大事故的主要原因之一。目前常用的基于反向传播(BP)神经网络和遗传算法-Elman神经网络(GA-ENN)耦合算法等建立瓦斯涌出量预测模型的预测方法在收敛性和精度上均存在一定的缺陷。提出了一种利用混沌免疫遗传优化算法(CIGOA)对Elman神经网络进行改进的新型智能优化算法来增强粒子的活性,提高其局部搜索能力和全局优化能力,克服了遗传算法(GA)的固有缺陷。对煤矿现场跟踪实测后进行仿真分析,结果表明:运用提出的CIGOA-ENN预测模型预测的最大相对误差为4.47%,最小相对误差为1.12%,平均相对误差为2.27%,明显小于BP神经网络和GA-ENN等预测模型的预测结果,表明CIGOA-ENN预测模型的输出结果更精确,对瓦斯涌出量预测系统的辨识误差更小,性能更优越。  相似文献   

7.
以某隧道爆破开挖为实例,利用BP神经网络解决复杂非线性函数逼近问题的能力,以最大段药量、爆心距、爆破分段数、泊松比、岩石基本质量指标作为影响爆破振动速度的主要因素,选取不同维数的输入变量建立BP神经网络模型来预测爆破振动速度。对比分析各组预测值与实测值之间的相对误差,选取合理维数的输入变量建立了爆破振动危害预测的BP神经网络模型。  相似文献   

8.
基于GA-ELM浆体管道输送临界流速预测模型研究   总被引:1,自引:0,他引:1  
针对浆体管道输送临界流速预测难度大、精确度低等技术难题,提出了基于极限学习机(ELM)的临界流速预测模型,用训练集对模型进行训练,以验证集预测值的均方误差作为适应度函数,利用遗传算法(GA)对ELM模型参数进行优化,应用优化得到的ELM模型对预测集进行预测。以某矿山为例,模型参数优化结果如下:隐含层节点数L为400,输入权值ai、偏置向量bi最优组合下预测结果适应度为0.0201。采用优化的ELM模型对预测集进行预测,预测结果的最大相对误差x=3.96%,平均相对误差y=1.58%,对比BP神经网络(x=12.95%)和SVM模型(x=3.19%),表明ELM模型更加精确、高效。  相似文献   

9.
为探究内腐蚀海底管道剩余强度,保证管道安全运营,基于管道壁厚、直径,腐蚀深度、长度、宽度和极限抗拉强度等影响因素,提出果蝇优化算法(FOA)优化广义回归神经网络(GRNN)的剩余强度计算方法,应用GRNN构建剩余强度预测模型;采用FOA优化模型,人为设置光滑因子的负面影响;通过有限元模拟生成影响因素和剩余强度数据库,并采用FOA-GRNN模型训练和预测;以巴西国家石油研究中心的极限强度爆破试验数据为例,分析验证预测模型。结果表明:FOAGRNN模型对有限元模拟数据的剩余强度预测平均相对误差(ARE)为16.53%,对试验数据预测ARE为7.81%,预测结果合理、准确。  相似文献   

10.
以连续梁桥为研究对象,建立了基于应变的损伤识别方法。提出将伪比能变化率作为损伤识别指标,并针对BP神经网络易陷入局部极小的缺点,用改进粒子群(PSO)算法优化BP神经网络的权值和阈值参数,建立PSO-BP网络预测模型。通过建立一座三跨连续梁桥有限元模型,以桥梁易损区域作为损伤识别对象进行数值模拟。结果表明,以伪比能变化率作为损伤识别指标,可以很好地实现对桥梁单位置和多位置损伤的定位及损伤程度识别,损伤程度识别的最大相对误差为3.14%,且网络内插能力优于外延能力。与传统BP神经网络比较,PSO-BP神经网络拥有更为精准的预测能力。  相似文献   

11.
为了精准预测瓦斯涌出量,针对绝对瓦斯涌出量非线性、时变性、复杂性等特点,提出采用核主成分分析法(KPCA)对影响因素进行降维处理;针对BP神经网络(BPNN)中存在的收敛速度慢和易陷入局部最优解的问题,采用压缩映射遗传算法(CMGA)优化BPNN;构建CMGA与BPNN的耦合算法(CMGANN),计算分析某低瓦斯矿井监测历史数据形成的样本集,建立KPCA-CMGANN预测模型;用KPCA-CMGANN预测模型和其他3种网络模型分别对煤矿现场数据进行预测。结果表明:KPCA-CMGANN预测模型在379个时间步长里达到收敛,4个回采工作面的瓦斯涌出量预测相对误差分别为0.58%、0.63%、0.57%和0.45%,平均相对误差仅为0.56%,预测精度和收敛速度均优于对比模型,可实现瓦斯涌出量的快速精准预测。  相似文献   

12.
基于R/S分析的矿井涌水量灰色预测   总被引:1,自引:0,他引:1  
矿井涌水量序列具有分形和灰色特征,将R/S分析与灰色系统理论相结合,提出了R/S灰色预测模型以预报矿井涌水量。并以龙门矿为例,对其矿井涌水量进行了R/S分析,确定了Hurst指数和平均循环周期;还在一个周期内进行了涌水量灰色预测。结果表明:龙门矿矿井涌水量平均循环周期为10个月;原本无法进行灰色预测的矿井涌水量序列,经R/S分析后不但可以进行灰色预测,而且预测精度达97.54%,明显高于成熟模型—灰色马尔科夫预测模型的精度。该方法拓宽了分形和灰色理论在涌水量研究中的应用范围。  相似文献   

13.
为减小金属矿井热害对井下人员安全及井下开采工作的不利影响,需对井下热害进行评价和预测。基于文献调查和专家评价方法,结合工程实际,利用层次分析法构建金属矿井采矿热害评价体系,从生产能力、地质条件、矿井通风、地理环境四个方面提出17个评价指标。在分析层次分析法(AHP)确定权重不足的基础上,结合物元分析理论,建立确定金属矿井热害评价各因素权重的物元分析模型。在各评价因素权重确定的基础上,以BP神经网络作为评价工具,构建金属矿井热害综合评价预测模型。最后,以某矿山为例,进行评价和预测分析。结果表明,基于物元分析和AHP的BP深井网络评价模型预测误差最大只有3%。  相似文献   

14.
从尾矿库安全管理实际出发,针对尾矿库安全预测影响因素多、波动性大和非线性的特点,提出了果蝇算法优化广义回归神经网络的尾矿库安全预测模型。通过利用果蝇优化算法的全局寻优特性对广义回归神经网络进行参数优化,同时采用相关分析方法选取尾矿库安全评价指标,实现尾矿库的安全评价预测。以辽宁本溪南芬尾矿库为研究实例进行预测仿真,实验结果表明:相较于GRNN网络模型和BP网络模型,采用果蝇算法优化的GRNN模型预测精度更高,适用性更强,在尾矿库安全预测方面具有很大的实际应用价值。  相似文献   

15.
基于PSO优化BP神经网络的水质预测研究   总被引:2,自引:0,他引:2  
为快速准确地预测河流水质,结合汾河监测数据,使用粒子群算法(PSO)优化BP神经网络模型(PSO-BP)进行水质预测.通过灰色关联度分析确定输入变量,利用PSO算法修正BP网络的初始权值、阈值,优化神经网络结构及算法全局收敛性.采用该模型对汾河主要污染物指标COD、BOD5、氨氮、挥发酚等进行预测和验证.结果表明,与传统的BP神经网络模型相比,PSO-BP模型使最大相对误差从15.43%减小到1.46%,其平均误差由4.00%减小到1.01%,预测均方根误差从5.956×10-3减小到1.605×10-4.因此,基于PSO-BP神经网络模型的预测更加精确,可用于水质预测.  相似文献   

16.
为降低火灾自动报警系统的误报、漏报率,基于BP神经网络算法,用LabVIEW虚拟仪器开发了一套智能火灾识别模型。在火灾探测区域内合理布置若干感温探测器,在火灾识别模型中,将探测到的温度场参数作为BP神经网络的输入,火灾发生与否作为输出,并对影响BP神经网络的各项参数和该模型的运行结果进行测试研究。仿真试验结果表明:选取42组训练样本,当网络训练到4 000次左右时,最大相对误差值达到目标值0.1,其中大部分相对误差值达到0.05以下,网络的实际输出值非常逼近样本的理想输出值;实际火灾试验表明:该火灾识别模型能够探测火灾的发生。  相似文献   

17.
为了快速有效地确定矿车等运输设备在巷道内运行时矿井摩擦阻力的变化情况,克服模拟软件计算量和现场实测工作量大的问题,以巷道风流速度、矿车运行速度、阻塞比、矿车长度4个矿车运行时巷道摩擦阻力的影响因素作为切入点,采用动网格技术模拟得到矿车在巷道内运行时有关矿井摩擦阻力的数据,以此为样本构建基于BP神经网络的矿井摩擦阻力预测模型,运用MATLAB软件进行网络训练,并将BP神经网络预测值与FLUENT模拟值进行对比。研究结果表明:BP神经网络结构比较简单,能以较快速度收敛,预测值与模拟值最大误差在7%以内,该神经网络模型用于求解矿车等运输设备在巷道内运行时摩擦阻力的变化情况是可行的。  相似文献   

18.
为更合理有效地解决煤矿开采引起的冲击地压危险性预测问题,以忻州窑煤矿冲击地压事故为工程背景,采用一种数据降维算法—主成分分析法(PCA),对广义回归神经网络(GRNN)的输入样本进行信息压缩,构建冲击地压危险性预测的PCA-GRNN模型。通过PCA法提取影响冲击地压强度的煤层厚度、倾角等9个因素,得到冲击地压危险性影响因素的前4个主成分因子表达式,并构建BPNN,GRNN和PCA-BP等另外3种模型,验证PCA-GRNN法预测冲击地压危险性的智能性和泛化能力。结果表明,所建PCA-GRNN模型平均训练误差为3.5%,平均预测误差为3.6%,有很好的预测能力和泛化能力。  相似文献   

19.
为提高煤层瓦斯含量预测的精准度和效率,提出1种利用遗传算法(GA)和模拟退火算法(SA)混合初始化BP神经网络(BPNN)的瓦斯含量预测新模型(GASA-BPNN模型)。利用灰色关联分析法(GRA)筛选瓦斯含量主控因素并作为GASA-BPNN预测模型的输入。为解决BPNN收敛速度慢和易陷入局部极小陷阱的问题,将GA和具有时变概率突跳性的SA整合为GASA算法协同初始化BPNN的权值和阈值,有效地提高BPNN的参数学习能力。将该模型应用于煤炭生产现场,结果表明:BPNN模型、GA-BPNN模型和GASA-BPNN模型瓦斯含量预测总平均相对误差分别为15.79%,9.03%,5.56%。相比BPNN模型和GA-BPNN模型,GASA-BPNN模型对样本的泛化能力更强,参数训练速度最快并且预测精准度最高。  相似文献   

20.
BP神经网络模型是岩爆预测中的常用模型,为了强化预测效果,选取BFGS算法对BP神经网络模型进行优化。选取应力系数■、脆性系数■和弹性能量指数Wet作为预测指标,国内外46组案例作为样本库,分别建立BFGS-BP神经网络模型和传统BP神经网络模型,对比验证其优化效果,将建好的模型用于锦屏二级水电站和秦岭隧道加以检验,得到一种有应用前景的机器学习预测模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号