首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper describes the results of extensive research to determine the limit of safety against flame transmission for sintered metal flame arrester elements when stressed by a flashback in a fuel-gas/oxygen mixture and when stressed through a stabilized burning of a flowing mixture of fuel-gas and air and of fuel-gas and oxygen at the sintered metal element. On the basis of the results of these investigations, the limit of safety against flame transmission for sintered metal flame arrester elements can be estimated and the conditions for testing can be specified. An analysis of the protection of gas outlets on gas distribution lines for welding, cutting and allied processes has been carried out, resulting in recommendations for necessary changes to the regulations for testing of safety devices with sintered metal flame arrester elements, which should be made in the next revision of the corresponding technical regulations for acetylene installations and calcium carbide stores (TRAC), and the standards DIN 8521, EN 730 and ISO 5175.  相似文献   

2.
This paper summarises the results of extensive research to determine the limit of safety against flame transmission for flame arrestors of relatively small size fitted with arrestor elements made of crimped metal ribbon. Depending on the reactivity of the fuel gas/air mixture and the tube geometry the running up to detonation and hence the stressing of a flame arrestor by a detonation is possible in longer tubes with relatively small diameters. Only with reactive gas phases of explosion group I this stressing case for a flame arrestor can be excluded. With detonative gas phases the stressing of the flame arrestor decisively depends on the place of installation with respect to the point of transition from deflagration to detonation in the system considered. Five different stressing cases with a probably very different limiting pressure of safety against flame transmission must be distinguished. The results of the investigations will help to evaluate the results from testing of flame arrestors carried out according to the requirements in national and international standards or regulations.  相似文献   

3.
This investigation shows how an increased oxygen concentration influences the performance limits of crimped ribbon deflagration flame arresters at elevated pressures. An evaluation of the maximum experimental safe gap (MESG) as reliable criterion for describing the performance limits under non-atmospheric conditions is given. Measurements of MESGs and flame arrester performance tests were performed. Various fuel/oxygen/air mixtures containing ethylene and propane were used as testing gases. Former studies on the pressure dependence and the influence of oxygen on the MESG were initially confirmed. Furthermore, performance tests using a commercial deflagration flame arrester revealed that such a flame arrester may prevent flame transmission also at non-atmospheric conditions within a limited range. For various oxygen concentrations the performance limits were reached at the same MESG. Hence, it can be assumed that a flame arrester possesses a device- and fuel-specific maximum experimental safe gap for a specific gas mixture in different concentrations and at different pressures. This performance-related maximum safe gap can be used as a parameter for estimating and describing the performance limits of a flame arrester. It offers an attempt to simplify the testing and qualification of deflagration flame arresters for non-atmospheric conditions.  相似文献   

4.
In-line detonation flame arresters are important safety apparatus to prevent group tank fires caused by the spreading of fire through vapor connection lines. In this study, a DN50 experimental apparatus aimed at the detonation flame penetration characteristics and failure mechanisms in a flame arrester was set up, and a series of experiments were carried out with 6.6% C2H4 and air mixture. Pressure, and velocity of flame penetrating through flame arrester housing and filters were analyzed. Experimental results showed that the attenuation of pressure and velocity was proportional to the thickness of the filters. Two failure modes of the fire-extinguishing process in the flame arrester were captured directly with a high-speed camera. In Mode I, the detonation flame could go straight through the flame arrester filters when the filters were too thin. In Mode II, when the filters were not sufficiently thick, the remained shock wave pressure of detonation flame was still several times of the initial pressure and could rise sharply at the downstream contraction section, resulting in that the flammable gas at the downstream transition section could be compressed and reignited even the flame had been extinguished by filters. These conclusions are helpful to reveal the nature of failure modes of fire-extinguishing process and design flame arresters with high fire-resisting performance by structure improved.  相似文献   

5.
研制满足高炉煤气管道阻火的火焰捕器.内径88 mm、199 mm和305 mm组合爆炸管道模拟实验结果表明,FA型火焰捕器的阻火性能良好,满足高炉煤气管道阻火的技术要求,各项技术性能指标达到了设计要求.  相似文献   

6.
The present investigation was aimed at demonstrating the pertinent use of a flame/detonation arrester for the safety in the process industry. The experimental data provide information on the performance of a static flame arrester. The experiments were conducted in a 3-m long and 28-mm i.d. tube. The arrester, itself consists in 2-mm i.d. tubes arranged in a honeycomb type structure which is located in the middle of the test tube. This is aimed at promoting heat losses during the passage of the flame. The experiments were conducted with fuel-rich mixtures of methane–ethane–ethylene at initial pressures in the range of 0.1–0.6 MPa. These very rich mixtures were more or less diluted in inert, namely, N2, as well as a mixture of CO2 and Ar, in order to match with compositions that are currently used in the process industry. The experimental results show that this device is appropriate for flame quenching but, in most cases, detonations were not successfully arrested. These unsuccessful operations of the device occurred for flames at a high velocity, namely for Re numbers of the order of or greater than 15,000.  相似文献   

7.
为研究火焰脉动在火灾领域相关研究进展,总结了不同燃料类型的火焰脉动形成机理,较为详细地介绍了火焰脉动现象研究中常用的脉动频率测量方法,列举了LDV、TDLAS、自由基团高频采集等新方法;介绍了池火脉动、射流/羽流气体火脉动在不同燃烧器尺寸,不同外部环境和不同燃料比等影响因素方面的研究内容与进展;对常见的3种不同的火焰脉动模型进行描述和归类;对火焰脉动的规律、机理等在火灾领域的早期识别和检测中的作用、特殊条件对于火焰脉动频率的影响和更加精细的火焰脉动模型的研究等方向提出展望。  相似文献   

8.
天燃气安全不仅仅局限在企业内部,而是面向全社会,关系到社会稳定和市民生命财产安全。随着天然气市场开拓和广泛利用,庞大的管网系统和多样的用气环境给安全工作提出了更高的要求。采用理论分析、实验研究相结合的方法研究了管道内天然气爆炸火焰及压力波的传播规律。应用直径为700mm,长度为93m的管道进行了三次天然气爆炸传播实验。得出爆源点最大压力值并不是整个爆炸过程的最大值;压力波最大压力值在爆源点附近先降低,然后上升到某一峰值之后再逐渐衰减;最大压力值在衰减过程中不是单调衰减,有点起伏;随着天然气浓度的增大,其爆炸平均升压速率反而减小;随着天然气浓度的增大,其爆炸平均升压速率反而在减小;爆源附近火焰传播速度较小,上升到某一峰值后逐渐衰减。  相似文献   

9.
殷永丰  邱榕 《火灾科学》2017,26(2):68-78
二甲醚(DME)作为可再生的清洁燃料,因为其优越的性能而越来越受关注,但与此同时其燃烧的安全性却容易被忽视。自蒙特利尔议定书以后,含磷化合物成为抑制碳氢化合物火焰最理想的卤代烷替代物,选取甲基磷酸二甲酯(DMMP)应用于二甲醚火焰,基于分层结构首次构筑了DME/DMMP详细化学反应机理。通过模拟研究发现,DMMP对DME层流预混火焰表现出与碳氢火焰同样明显的抑制作用。进一步进行火焰抑制机理分析,结果显示DMMP对DME层流火焰的抑制主要是因为PO_2和HOPO的循环反应促进了H和OH重组,同时得出DMMP对DME富燃火焰抑制更有效的结论。  相似文献   

10.
为了研究燃油流量对防火试验火焰特征的影响,为防火试验方案的设计提供参考和指导,采用Ansys Fluent软件对NexGen燃烧器进行三维定常数值模拟,分析了不同燃油流量条件下的火焰特征。结果表明:燃油流量对火焰最高温度和火焰形状几乎没有影响,但对火焰长度、监测面上温度分布、7个测量点的平均温度和热流密度有很大影响,通过分析各燃油流量条件下的火焰特征,发现当空气流量为35.8 g/s时,燃油流量在2.0~2.11 g/s——即余气系数为1.15~1.22时,能够用于防火试验。  相似文献   

11.
为了揭示空气中丙烷火焰传播特性,利用纹影系统记录了预混气体小能量点火条件下火焰形成与传播过程,得到了火焰表面的微观结构特征,分析了混合气体火焰的稳定性及其影响因素。结果表明:丙烷/空气混合物火焰发展过程及其表面微观特征与浓度直接相关;当混合物浓度接近爆炸上下限时,火焰扩展速率整体不大于0.5 m/s,燃烧区域向上漂浮,浮力成为影响火焰失稳的主导因素;当混合物浓度靠理论配比时,火焰呈规则球形扩展,火焰稳定性按照先减弱后增强的趋势发展,火焰表面褶皱的形成及演化规律是热扩散不稳定性和流体力学不稳定性共存与竞争的作用结果。  相似文献   

12.
Previous works (Daubech et al., 2019) were dedicated to gaseous flame acceleration along long pipes with a set of cases studied both experimentally and numerically. In these cases, the flammable mixture was initially quiescent and homogenously distributed. The impact of the tube diameter and material were studied trough both approaches for rather slow flames, the fuel being methane. While main features of the real flame were recovered by the chosen CFD method, some limits remained.A new experimental dataset is detailed and analyzed with a quicker flame, the fuel being hydrogen and the same experimental set-up as the one used for measuring slow flames. Thus, the fuel effect on the flame dynamics can be directly highlighted.A simple CFD approach is tested for recovering two distinct flame behaviors: a deflagration flame and another undergoing deflagration-to-detonation transition. Furthermore, the modelling results are used to propose elements of interpretation for flame acceleration.  相似文献   

13.
Numerical simulations of premixed hydrogen-air flame propagation in a pipe with different contraction or expansion angles are carried out in this study. The effects on the flame propagation characteristics are investigated, including flame shape, the speed of flame front and overpressure. Results show that the flame propagation at different contraction angles experiences 6 flame stages: spherical flame stage, finger-shaped flame stage, stage of flame front touching the sidewalls, classic tulip flame stage, dissipation stage of tulip flame and its re-formation stage. The formation of tulip flame and the following stages are promoted by the contraction structure. Meanwhile, the development of the flow and pressure fields near the contraction are analyzed and it is found that the paraclinical effects induced by the contraction angle enhance the tulip re-formation. In the sudden expansion pipes, a triple flame stage appears in the pipes. The flame front remains relatively static for a period of time. However, the flame would continue to propagate when the expansion angle becomes larger and the flame propagation distance in the ducts increased obviously with the larger expansion angle. Baroclinic effect can inhibit the intensity of the vortex in the flow field, and hence weaken the forward transport of fuel. This inhibit effects decrease with the expansion angle becomes larger. The results of this study have implications concerning designs for pipe geometry of hydrogen and may help get better hydrogen transportation.  相似文献   

14.
It is urgent to explore effective suppression methods for gas fires and explosions to ensure the safe utilizations of combustible gases in industrial processes. In this work, experiments are performed to study the effect of spherical ceramic pellets on premixed methane-air flame propagation in a closed duct. High-speed schlieren photography and pressure transducers are used to record the flame propagation and pressure transient, respectively. Behaviors of the flame propagating through a section of the duct filled with ceramic pellets in mixtures at different equivalence ratios are scrutinized. Three different diameters of pellets are considered in the experiments. The result shows that the flame can be quenched in the case with a smaller pellet diameter (3 mm) for a wide range of equivalence ratios from fuel-lean to fuel-rich mixture. For larger pellet diameter (5 or 10 mm), flame extinction occurs in fuel-rich mixtures (e.g. Φ = 1.1, 1.2). For the cases of flame surviving through the pellets bed, the pellets show a significant influence on the flame structure and behavior. The flame propagation depends on the porosity and the mean void diameter of the porous media in the pellets bed. Small void diameter is beneficial to flame quenching, while large porosity can accelerate the flame propagation. The pressure dynamics evolution is closely related to the interaction of flame with the pellets, and it depends on whether the flame quenches in the pellets bed. Overall, d = 3 mm ceramic pellets display the best suppression effect on flame propagation and pressure buildup in this study. The results of this study are of great significance to guide the safety design of spherical suppression materials in engineering applications for process safety researchers and engineers.  相似文献   

15.
为研究水平管道空间不同煤质煤尘爆炸火焰传播特性,选取褐煤、长焰煤、不粘煤、气煤4种煤尘,对爆炸火焰焰峰特性、火焰加速传播特性、火焰传播距离与持续时间展开研究。研究结果表明:褐煤在500 ms内焰峰的形状由尖锐向平滑再向钝化不断演变,长焰煤与不粘煤在375 ms时焰峰前端出现明显焰体分离现象,分析认为这与管体冷壁效应、空间尺度效应及空间氧气消耗直接相关;气煤在375 ms时焰峰出现大面积火焰碎纹,说明气煤爆炸火焰猛烈传播的持续时间相对较短,整体爆炸强度相对较弱;褐煤与长焰煤爆炸火焰存在2次间断性加速,分析认为这与管体空间受限、常温管壁散热、局部助燃氧气瞬间不足等因素有关;褐煤在爆炸后400~600 ms内火焰2次加速完全,火焰传播距离达740 mm,明显大于长焰煤、不粘煤与气煤,说明低变质褐煤爆炸火焰持续时间更长,火焰传播距离更远且传播更剧烈;虽然气煤火焰最远传播距离比长焰煤大30 mm,但由于气煤火焰在375 ms左右出现大片火焰碎纹,因此气煤整体的爆炸强度小于长焰煤。  相似文献   

16.
A novel mitigation system against hydrogen-air deflagrations in nuclear power plant buildings is proposed and developed through a series of field experiments using explosion vessels of different volume sizes. The mitigation system is installed on the outer surface of the vessels, and it comprises flame arrester and explosion air bag. The flame arrester is made by stacking 10–20 sheets of fine-mesh wire screens, and the air bag is connected for holding explosion gas. The successful mitigation mechanism is the sequence of pressure-rise reduction by the air bag expansion, flame quenching by the flame arrester, and the slow burning of the gas mixture sucked from the air bag back into the vessel due to the negative pressure caused by the rapid condensation of water vapor inside the vessel. Necessary conditions for the successful mitigation system are discussed, and the practical unit size of flame arrester sheet is recommended.  相似文献   

17.
The Maximum Experimental Safe Gap (MESG) is an important criterion to assess the propagation of flames through small gaps. This safety-related parameter is used to classify the flammable gases and vapors in explosion groups, which are fundamental to constructional explosion protection. It is used both, for the safe design of flameproof encapsulated devices as well as for selecting flame arresters appropriate to the individual application. The MESG of a fuel is determined experimentally according to the standard ISO/IEC 80079-20-1:2017 at normal conditions (20 °C, 1.0 bar) with air as oxidizing gas. The aim of this work is to investigate the effect of inert gas addition on the MESG in order to assess the effectiveness of inertization in constructional explosion protection. The term limiting experimental safe gap (SG) is used for the result of these measurements. The fuel-air mixtures (fuels: hydrogen, ethylene, propene, methane) used as representatives for the explosion groups in flame arrester testing were chosen and diluted with inert gas (nitrogen, carbon dioxide) before testing. The dependence of the limiting experimental safe gap on the total initial pressure, amount and nature of inert additive is discussed. The initial pressure was varied up to 2.0 bar to include increased pressure conditions used in flame arrester testing. Apart from the well-known reciprocal dependence on the initial pressure, the added inert gas results in an exponential increase of SG. This effect depends on the inertizing potential of the gas and is therefore different with nitrogen and carbon dioxide. The ranking of the fuels is the same as with MESG. As a result, various mixtures of the same limiting experimental safe gap can now be chosen and tested with an individual flame arrester to prove the concept of a constant and device-related limiting safe gap. The work was funded by BG-RCI in Heidelberg (PTB grant number 37056).  相似文献   

18.
Study of flame distribution laws and the hazard effects in a tunnel gas explosion accident is of great importance for safety issue. However, it has not yet been fully explored. The object of present work is mainly to study the effects of premixed gas concentration on the distribution law of the flame region and the hazard effects involving methane-air explosion in a tube and a tunnel based on experimental and numerical results. The experiments were conducted in a tube with one end closed and the other open. The tube was partially filled with premixed methane-air mixture with six different premixed methane concentrations. Major simulation works were performed in a full-scale tunnel with a length of 1000 m. The first 56 m of the tunnel were occupied by methane–air mixture. Results show that the flame region is always longer than the original gas region in any case. Concentration has significant effects on the flame region distribution and the explosion behaviors. In the tube, peak overpressures and maximum rates of overpressure rise (dp/dt)max for mixtures with lower and higher concentrations are great lower than that for mixtures close to stoichiometric concentration. Due to the gas diffusion effect, not the stoichiometric mixture but the mixture with a slightly higher concentration of 11% gets the highest peak overpressure and the shock wave speed along the tube. In the full-scale tunnel, for fuel lean and stoichiometric mixture, the maximum peak combustion rates is achieved before arriving at the boundary of the original methane accumulation region, while for fuel rich mixture, the maximum value appears beyond the region. It is also found that the flame region for the case of stoichiometric mixture is the shortest as 72 m since the higher explosion intensity shortens the gas diffusion time. The case for concentration of 13% can reach up to a longest value of 128 m for longer diffusion time and the abundant fuel. The “serious injury and death” zone caused by shock wave may reach up to 3–8 times of the length of the original methane occupied region, which is the widest damage region.  相似文献   

19.
为探究在横向风作用下不同超细水雾含量对双喷口射流扩散火焰燃烧特性的影响,利用高速摄像机拍摄火焰几何形态,分析不同喷口间距和横向风中的超细水雾含量对火焰形态演化、火焰长度和火焰吹熄极限的影响,并基于前人数学模型,推导与增长区域试验数据具有较好相关性的火焰拉伸长度变化的经验公式.结果 表明:随着横向风中雾通量的增加,双喷口...  相似文献   

20.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号