首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一个可应用于HCCI发动机工作过程研究的DME化学反应动力学简化模型,该模型由28种组分、38个基元反应组成,包括3个子模型,即低温反应和负温度系数区子模型、高温裂解和高温氧化子模型以及甲酸生成过程子模型.通过算例对比分析,该DME简化模型能正确揭示DME燃烧过程主要生成物组分的变化规律,能准确计算DME燃烧过程低温和高温阶段的放热特征时刻,其计算结果与详细机理计算结果吻合.相对于详细机理,简化模型节省了计算时间,为实现化学反应动力学与CFD多维模型耦合的燃烧计算提供了一个可行而有效的途径.  相似文献   

2.
化学品活性反应危险性表征方法研究   总被引:2,自引:1,他引:1  
通过对国内外典型活性化学反应事故的研究,在传统和通用的化学反应危险性评价表征方法的基础上,提出使用化学反应的最大功密度表征化学反应热危险性的新方法。该方法将化学反应的热力学参数和动力学参数相结合,全面表征了反应过程的热危险性。采用加速量热仪模拟硝酸铵、过氧化氢,以及多种有机过氧化物的绝热反应放热情况,并运用测得的参数,计算得到其最大功密度,并与传统动力学计算方法得到的结果进行比较。根据对实验和计算结果的分析证明:利用最大功密度的方法评价化学反应的危险性更符合化学反应的实际情况,该方法为化学品安全生产提供可靠的技术支持。  相似文献   

3.
过氧化甲乙酮的热危险性研究   总被引:1,自引:0,他引:1  
为研究过氧化甲乙酮(MEKPO)在运输与储存中的热危险性,利用差示扫描量热仪(DSC)对质量分数为52%的MEKPO溶液(以2,2,4-三甲基-1,3-戊二醇二异丁酸酯为溶剂)进行测试,得到其起始分解温度T0约为40℃,比放热量ΔH约为1.24 kJ/g。运用加速量热仪(ARC)对3种MEKPO溶液(40%,45%和52%)及MEKPO纯品(化学纯)在绝热条件下进行了热分解测试,并在此基础上,借助Semenov热爆炸模型,计算得到上述样品在50 kg包件下的自加速分解温度(TSADT)分别为65.64,63.72,55.88和51.17℃。研究结果表明,加入稀释稳定剂是降低MEKPO热危险性的有效途径,且MEKPO混合物中其质量分数越大,其危险性越高。  相似文献   

4.
殷永丰  邱榕 《火灾科学》2017,26(2):68-78
二甲醚(DME)作为可再生的清洁燃料,因为其优越的性能而越来越受关注,但与此同时其燃烧的安全性却容易被忽视。自蒙特利尔议定书以后,含磷化合物成为抑制碳氢化合物火焰最理想的卤代烷替代物,选取甲基磷酸二甲酯(DMMP)应用于二甲醚火焰,基于分层结构首次构筑了DME/DMMP详细化学反应机理。通过模拟研究发现,DMMP对DME层流预混火焰表现出与碳氢火焰同样明显的抑制作用。进一步进行火焰抑制机理分析,结果显示DMMP对DME层流火焰的抑制主要是因为PO_2和HOPO的循环反应促进了H和OH重组,同时得出DMMP对DME富燃火焰抑制更有效的结论。  相似文献   

5.
为获得偶氮二异丁腈(AIBN)在各种热应力条件下的危险参数,通过简化的压力容器试验测试AIBN的热分解激烈性等级,采用差示扫描量热仪(DSC)和绝热量热仪(ARC)对AIBN的热分解过程进行研究,用动力学与热稳定性分析软件AKTS计算动力学参数在整个反应进程中的变化情况,并根据ARC测试结果推算自加速分解温度(TSADT)。结果表明:AIBN的热分解激烈性为Ⅱ类,易呈现爆炸特性;其初始分解温度和TSADT很低,分别约为78℃和61℃,且分解放热过程和熔融吸热过程同时发生。因此,在AIBN的生产、使用、贮存和运输等过程中应加强温度监控,并根据实际情况采取降温措施。  相似文献   

6.
Diethyl ether (DEE), epoxypropane (PO) and n-pentane have excellent ignition and combustion performance; hence, they have a wide variety of applications in industry and advanced aviation propulsion systems. As these fuels are flammable at normal temperature and pressure, their explosive characteristics need to be explored. In this study, the lower flammability limits (LFLs) of vapor mixtures of DEE/PO/n-pentane in air were measured in 20 L, closed, stainless steel spherical vessels. Experimental results were obtained at ambient atmospheric pressure and an initial temperature of 40 °C. The experimental results show that the LFLs of DEE-air, n-pentane -air, and PO-air are 1.81 vol%, 1.41 vol% and 2.44 vol%, respectively. The LFLs of binary/ternary fuel mixtures under different compositions were tested, and the experimental results are compared with the classical Le Chatelier's formula. The results show that, for the binary fuels (i.e., DEE/PO, DEE/n-pentane, PO/n-pentane)-air mixtures, the maximum difference of the LFLs between Le Chatelier's formula and the experimental results is 6.10%. For the ternary fuels (i.e., DEE/PO/n-pentane)-air mixtures, the maximum difference of the LFLs between the two results is 6.33%. Due to the adiabatic flame temperature of each single fuel mixture being close, the Le Chatelier's formula is applicable for an estimation of the LFL for DEE/PO/n-pentane-air mixtures.  相似文献   

7.
8.
Dimethyl ether (DME) has been focused as a substitute for diesel fuel, and a number of studies have investigated engines fueled with DME because DME has a low auto-ignition temperature and does not generate particulate matter (PM). Therefore, in the last few years, the construction of DME filling stations for trucks in Japan has been planned. The introduction of DME vehicles requires expansion of DME supply stations, which in turn requires the collection of safety data and the establishment of safety regulations. The present paper describes an experimental investigation of the hypothetical scenario in which liquid DME is accidentally released and an explosion occurs. In the present study, large-scale leakage and ignition of DME were investigated and flame propagation data was obtained. We also measured the overpressure of the blast wave and the heat flux from the fireball. When the ignition position is near the nozzle, the flame propagation velocity is higher. The overpressure from the DME fireball is stronger than that from DME/air mixture deflagration. In summary, these results provide safety data for safety management of DME filling stations.  相似文献   

9.
10.
Runaway reactions by organic peroxides have occurred throughout the world. In this study, we used 1,1,-Di(tert-butylperoxy) cyclohexane (CH) 70 mass% as the main material, which was extensively employed as initiator for styrene in polymerization. Fire extinguishers are the first fire-fighting apparatus when fires occur. If a fire extinguisher has sat idle for a long time, which would cause the extinguishing agent to damp, it cannot achieve the desired effect and be properly handled at the start of the accident, thereby causing more casualties and property losses. CH 70 mass% was employed to mixed with monoammonium phosphate (MAP) for understanding the phenomenon by applying differential scanning calorimetry (DSC). Safety parameters also were carried out for more deeply understanding the basic characteristics for preventing an accident from occurring, in terms of applying CH 70 mass% as the initiator in the manufacturing process.  相似文献   

11.
The knowledge of the vapor–liquid two-phase diethyl ether (DEE)/air mixtures (mist) on the explosion parameters was an important basis of accident prevention. Two sets of vapor–liquid two-phase DEE/air mixtures of various concentrations were obtained with Sauter mean diameters of 12.89 and 22.90 μm. Experiments were conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at an ignition energy of 40.32 J and at an initial room temperature and pressure of 21 °C and 0.10 MPa, respectively. The effects of the concentration and particle size of DEE on the explosion pressure, the explosion temperature, and the lower and upper flammability limits were analyzed. Finally, a series of experiments was conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at various ignition energies. The minimum ignition energies were determined, and the results were discussed. The results were also compared against our previous work on the explosion characteristics of vapor–liquid two-phase n-hexane/air mixtures.  相似文献   

12.
The Leung method proposed by the Design Institute of Emergency Relief Systems (DIERS) is widely used in the design of relief systems involving two-phase flow. However, this method is not always suitable for all the situations. The calculating results may be unacceptably large, especially under high overpressure. To aid selection of appropriate vent sizing methods, a typical vapor system experiment (esterification of methanol-acetic and anhydride) was conducted by the vent sizing unit (VSU) of accelerating rate calorimeter (ARC). Seven different stationary methods were used to calculate the venting size under overpressure of 10%, 20%, 50%, 100% and 200%. Through the systematic comparison of different methods, a conservatism order of stationary methods was summarized as well as the selecting principles for these methods were discussed. Process simulation was also applied to investigate the relationship between reactor temperature/pressure and its relief size, which could be used in the prediction of vent size in vapor system conveniently without complex calculating procedure.  相似文献   

13.
使用加速量热仪(ARC)研究硝酸异辛酯(EHN)的热分解,得到热分解温度随时间的变化曲线,自放热速率、分解压力随温度的变化曲线以及分解压力随升温速率的变化曲线。分析在绝热条件下硝酸异辛酯的热分解反应动力学和热分解过程,计算表观活化能、指前因子和反应热等参数。根据绝热热分解的起始温度和反应热数据,给出硝酸异辛酯在反应危险度等级中的分类,并计算在75℃时的反应风险指数。  相似文献   

14.
15.
Liquefied petroleum gas (LPG) is flammable and has risks of pool fires during its transportation, storage, and applications. The heat radiation by LPG pool fires poses hazards to individuals nearby and can lead to potential failures of ambient facilities. Due to the high costs and invasive nature of experiments for investigating large-scale pool fires, computational fluid dynamics (CFD) is employed in this study as the cost-effective and noninvasive method to simulate the process and analyze the characteristics of large hydrocarbon pool fires. Specifically, an experimentally validated 3-D CFD model has been built to simulate surface emissive power (SEP) and incident radiation of large-scale LPG pool fires with three different diameters and wind speeds. Steady-state simulations with P1 radiation and probability density function (PDF) combustion models were employed to obtain reliable data after the optimizations based on the comparisons with experimental data and empirical models. The comparison with benchmark experimental data demonstrates that the CFD model employed in this study can accurately predict the incident radiation of large LPG pool fires. A new SEP correlation is also proposed, which is specifically for LPG pool fires with a diameter between 10 m and 20 m. Additionally, the safe separation distances between LPG facilities and surrounded objects have been estimated based on the CFD simulation results. The high-resolution CFD model for large LPG pool fires in this work provides noninvasive and direct quantitative evidence to enhance the fundamental understanding on the safety of large LPG pool fires and can assist regulatory agencies in refining the safety limits in the cost-effective and time-saving manners.  相似文献   

16.
1,1-Di (tert-butylperoxy) cyclohexane (DTBPH) has been widely employed in the chemical industry. Unfortunately, organic peroxides have been involved in many serious fires and explosions in manufacturing processes, storage, and transportation. This study investigated the thermokinetic parameters by isothermal kinetic and non-isothermal-kinetic simulation, using differential scanning calorimetry (DSC) tests. DSC was applied to assess the kinetic parameters, such as kinetic model, frequency factor (ln k0), activation energy (Ea), reaction order, and heat of reaction (ΔHd). Comparisons of non-isothermal and isothermal-kinetic model simulation led to a beneficial kinetic model of thermal decomposition to predict the thermal hazard of DTBPH. Simulations of a 0.5 L Dewar vessel and 25 kg barrel commercial package in liquid thermal explosion models were performed and compared to the results in the literature. From the results, the optimal conditions for use of DTBPH to avoid violent runaway reactions during the storage and transportation were determined. This study established the features of thermal decomposition that could be executed as a reduction of energy potential and storage conditions in view of loss prevention.  相似文献   

17.
ABSTRACT

Objective: This study analyzed the influence of reference sensor inputs from anthropomorphic test devices (ATDs) versus postmortem human subjects (PMHSs) on simulations of frontal blunt impacts to the advanced combat helmet (ACH).

Methods: A rigid-arm pendulum was used to generate frontal impacts to ACHs mounted on ATDs and PMHS. An appropriately sized ACH was selected according to standard fitting guidelines. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) head was selected for ATD tests due to shape features that enabled a realistic helmet fit. A custom procedure was used to mount a reference sensor internally near the center of gravity (CG) of the PMHS. Reference sensor data from the head CG were used as inputs for the Simulated Injury Monitor (SIMon). Brain responses were assessed with the cumulative strain damage measure set at 10%, or CSDM(10).

Results: Compared to ATD tests, PMHS tests produced 18.7% higher peak linear accelerations and 5.2% higher peak angular velocities. Average times to peak for linear accelerations were relatively similar between ATDs (5.5?ms) and PMHSs (5.8?ms). However, times to peak for angular velocities were higher by a factor of up to 3.4 for PMHSs compared to ATDs. Values for were also higher by a factor of up to 13.1 when PMHS inputs were used for SIMon.

Conclusions: The preliminary findings of this work indicate that small differences in ATD versus PMHS head kinematics could lead to large differences in strain-derived brain injury metrics such as CSDM.  相似文献   

18.
过氧乙酸溶液的热爆炸分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为有效预防生产、储运和使用中过氧乙酸引发的火灾爆炸事故,采用绝热加速量热仪模拟了15%和10%浓度的过氧乙酸溶液的热爆炸过程,得到了两种浓度的PAA溶液的热分解温度、压力、温升速率随时间变化的关系曲线,并用速率常数法分别计算了反应级数n、表观活化能Ea和指前因子A。经过绝热修正,得到最危险状态下的温度和压力等相关热危险参数,并基于Semenov热爆炸理论推算了三种包装条件下两种样品的不可逆温度和自加速分解温度。结果表明,15%PAA和10%PAA溶液热分解反应级数均为一级,表观活化能分别为1044kJ·mol-1和1032kJ·mol-1;绝热条件下初始放热温度分别为429℃和293℃;自加速分解温度受反应系统到达最大反应速率的时间、物料存储规模及散热条件的影响,建议PAA应储存在通风背阴处且单个包装容积应控制在25L以下。  相似文献   

19.
This article deals with an assessment of the influence of oxygen concentration on the composition and amount of combustion products generated in the course of heating coal particles and wood sawdust at 150 °C. This was done both with normal air and at 15% oxygen in the air in an isothermal furnace. The generated gases were analyzed by a Fourier Transform infrared spectrometer. Results show that under both conditions, the same substances are formed: water, carbon dioxide, carbon monoxide and aliphatic hydrocarbons. However, the quantities changed. At 21% oxygen, the concentrations of carbon monoxide and methane were higher than at 15% oxygen both in coal and wood. The oxygen concentration was also found to affect the rates of release of CO and CO2. The rate of release of CO was higher at 21% oxygen, but that of CO2 was higher at 15%, indicating two different mechanisms. In all cases, the concentrations of these gases were higher for coal than for wood. The results have implications for the specification of safe conditions of storage of coal and wood substances and the selection of safety measures.  相似文献   

20.
有机过氧化物生产火灾爆炸危险性分析   总被引:6,自引:0,他引:6  
针对有机过氧化物自分解温度较低、反应过程易引发火灾爆炸等危险特性,采用危险与可操作分析(HAZOP)方法和事故树(FTA)分析对过氧化物生产过程中存在的火灾爆炸危险性进行分析.结果表明,有机过氧化物生产过程中低温的保证是关键,应对制冷系统进行故障类型及影响分析(FMEA),从而确保制冷系统安全可靠.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号