首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dust explosion venting experiments were performed using a 20-L spherical chamber at elevated static activation overpressures larger than 1 bar. Lycopodium dust samples with mean diameter of 70 μm and electric igniters with 0.5 KJ ignition energy were used in the experiments. Explosion overpressures in the chamber and flame appearances near the vent were recorded simultaneously. The results indicated that the flame appeared as the under-expanded free jet with shock diamonds, when the overpressure in the chamber was larger than the critical pressure during the venting process. The flame appeared as the normal constant-pressure combustion when the pressure venting process finished. Three types of venting processes were concluded in the experiments: no secondary flame and no secondary explosion, secondary flame, secondary explosion. The occurrence of the secondary explosions near the vent was related to the vent diameter and the static activation overpressure. Larger diameters and lower static activation overpressures were beneficial to the occurrence of the secondary explosions. In current experiments, the secondary explosions only occurred at the following combinations of the vent diameter and the static activation overpressure: 40 mm and 1.2 bar, 60 mm and 1.2 bar, 60 mm and 1.8 bar.  相似文献   

2.
Explosion venting is a frequently-used way to lower explosion pressure and accident loss. Recently, studies of vessel explosion venting have received much attention, while little attention has been paid to pipe explosion venting. This study researched the characteristics of explosion venting for Coal Bed Methane (CBM) transfer pipe, and proposed the way of explosion venting to chamber in order to avoid the influence of explosion venting on external environment, and investigated the effects of explosion venting to atmosphere and chamber. When explosion venting to atmosphere, the average explosion impulse 4.89 kPa s; when explosion venting to 0 MPa (atmospheric pressure) chamber, average explosion impulse is 7.52 kPa s; when explosion venting to −0.01 MPa chamber, explosion flame and pressure obviously drop, and average explosion impulse decreases to 4.08 kPa s; when explosion venting to −0.09 MPa chamber, explosion flame goes out and average explosion impulse is 1.45 kPa s. Thus, the effect of explosion venting to negative chamber is far better than that to atmospheric chamber. Negative chamber can absorb more explosion gas and energy, increase stretch of explosion flame, and eliminate free radical of gas explosion. All these can promote the effect of explosion venting to negative chamber.  相似文献   

3.
To further elucidate the influence mechanism of side vents on the dynamic characteristics of gas explosions in tubes is helpful to design more reasonable vent layouts. In this paper, 9.5% methane-air explosion experiments were conducted in a tube with two side-vented ducts, and the effects of vent layouts and vent areas on the dynamic characteristics of explosion overpressure and flame propagation speed were investigated. The results demonstrate that under the same condition with a single vent area of 100 mm × 100 mm, when only the end vent is open, the maximum explosion overpressure and the maximum flame propagation speed are the highest among the five vent layouts. When the side vents 1 and 2 and the end vent are open, the maximum explosion overpressure is the lowest, and an unusual discovery is that the flame front changes into a hemispherical shape, finger shape, quasi-plane shape, tulip shape and wrinkled structure. When only side vent 1 is open, a unique Helmholtz oscillation occurs, and a new discovery is that there is a consistent oscillation relationship among the overpressure, flame propagation speed and flame structure. Helmholtz oscillation occurs only when a single vent area is 100 mm × 100 mm–60 mm × 60 mm, and the oscillation degree decreases with decreasing vent area. During the vent failure stage, the maximum explosion overpressure is generated, the flame front begins to appear irregular shape, and the flame propagation speed shows a prominent characteristic peak. After the vent failure stage, the driving effect of the end vent on the flame is higher than that of the side vent on the flame. Furthermore, the correlation equations of the mathematical relationships among the maximum explosion overpressure Pred, the static activation pressure Pstat and the vent coefficient Kv under four vent layouts are established, respectively.  相似文献   

4.
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, Φ ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at Φ = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure.  相似文献   

5.
Flame regime of gasoline-air mixture explosion is related to chemical reaction, turbulent flow and heat and mass transfer. Experimental data of gas velocity, pressure and flame temperature of gasoline-air mixture explosion in a tube at the equivalence ratio of 0.72, 1.00 and 1.28 were preliminarily acquired. Then, fluctuating velocities, overpressures, and burned and unburned gas temperatures at early stage (50 ms), intermediate stage (150 ms) and last stage (250 ms) in three explosions were determined through the analysis of the experimental data. Finally, the Damköhler number and Reynolds number of the early, intermediate and late stage were calculated respectively, and the flame regimes for each stage were estimated through the Damköhler number vs. Reynolds number diagram. Results show that all the flames at early, intermediate and late stage of the three explosions have the same regime of flamelets-in-eddies. The conclusions can provide some useful references for further study of the flame regime and the numerical analysis model selection of gasoline-air mixture explosion.  相似文献   

6.
Ducts are often recommended in the design of dust explosion venting in order to discharge materials to safe locations. However, the maximum reduced overpressure increases in a duct-vented vessel rather than in a simply vented vessel. This needs to be studied further for understanding the duct-venting mechanism. Numerous duct-vented dust explosion experiments were conducted, using a 20 L spherical chamber at elevated static activation overpressures, ranging from 1.8 bar to 6 bar. Duct diameters of 15 mm and 28 mm, and duct lengths of 0 m (simply venting), 1 m and 2 m, were selected. Explosion pressures both in the vessel and in the duct were recorded by pressure sensors, with a frequency of 5 kHz. Flame signals in the duct were also obtained by phototransistors. Results indicate that the secondary explosion occurring in the duct increases the maximum reduced overpressure in the vessel. The secondary explosion is greatly affected by the duct diameter and static activation overpressure, and hence influences the amplification of the maximum reduced overpressure. Larger static activation overpressure decreases the severity of the secondary explosion, and hence decreases the increment in the maximum reduced overpressure. The secondary pressure peak is more obvious as the pressure accumulation is easier in a duct with a smaller diameter. However, the increment of the maximum reduced overpressure is smaller because blockage effect, flame front distortion, and turbulent mixing due to secondary explosion are weaker in a narrow duct. The influence of duct length on the maximum reduced overpressure is small at elevated static activation overpressures, ranging from 1.8 bar to 6 bar at 15 mm and 28 mm duct diameters.  相似文献   

7.
Ignition of natural gas (composed primarily of methane) is generally not considered to pose explosion hazards when in unconfined and low- or medium-congested areas, as most of the areas within LNG regasification facilities can typically be classified. However, as the degrees of confinement and/or congestion increase, the potential exists for the ignition of a methane cloud to result in damaging overpressures (as demonstrated by the recurring residential explosions due to natural gas leaks). Therefore, it is prudent to examine a proposed facility’s design to identify areas where vapor cloud explosions (VCEs) may cause damage, particularly if the damage may extend off site.An area of potential interest for VCEs is the dock, while an LNG carrier is being offloaded: the vessel hull provides one degree of confinement and the shoreline may provide another; some degree of congestion is provided by the dock and associated equipment.In this paper, the computational fluid dynamics (CFD) software FLACS is used to evaluate the consequences of the ignition of a flammable vapor cloud from an LNG spill during the LNG carrier offloading process. The simulations will demonstrate different approaches that can be taken to evaluate a vapor cloud explosion scenario in a partially confined and partially congested geometry.  相似文献   

8.
Research Mining Institute, Inc., Ostrava-Radvanice, in cooperation with Dept. of Theory And Technology of Explosives of University of Pardubice and Klokner Institute of CTU in Prague, has performed three series of experiments examining methane–air mixture explosions and their impact on 14 and 29 cm thick wall. The project was named ‘Modeling Pressure Fields Effects on Engineering Structures During Accidental Explosions of Gases in Buildings’ and was sponsored by Grant Agency of Czech Republic (project No. 103/01/0039). The project is aimed at deeper understanding of pressure field effect upon the structures. Methane-air mixture explosion was used to generate the blast wave. The geometrical configuration of the environment resembled a room of an average size, such as larger kitchen. Preliminary simulations were made by AutoReaGas code (Century Dynamics and TNO). The design phase was followed by tests in an experimental mine in Stramberk. Two masonry dams were build in the mine, with cross-section areas of 10.2 m2 and longitudinal distance of 5.7 m, creating an explosion chamber with a volume of 58 m3. Two vent openings with an adjustable free cross-section were used to control the maximum overpressure inside the chamber. The concentration of methane-air mixture was approximately 9.5% (vol.) and the volumes of the clouds were 5.25, 10.2 and 15.3 m3 respectively. The generated blast wave overpressures inside the chamber ranged between 1 and 150 kPa. According to experimental results a calibration of the code was performed. After the calibration it is possible to make relatively accurate simulations in similar geometry and to calculate the pressure loading of the structure at any spot in the simulated space. This paper describes the experiments performed and compares experimental and computational results.  相似文献   

9.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

10.
Experiments were performed on the influence of pre-ignition turbulence on the course of vented gas and dust explosions. A vertical cylindrical explosion chamber of approximately 100 l volume and a length-to-diameter ratio (l/d) of 4.7 consisting of a steel bottom segment and three glass sections connected by steel flanges was used to perform the experiments. Sixteen small fans evenly distributed within the chamber produced turbulent fluctuations from 0 to 0.45 m/s. A Laser-Doppler-anemometer (LDA) was used to measure the flow and turbulence fields. During the experiments the pressure and in the case of dust explosions the dust concentration were measured. In addition, the flame propagation was observed by a high-speed video camera. A propane/nitrogen/oxygen mixture was used for the gas explosion experiments, while the dust explosions were produced by a cornstarch/air mixture.It turned out that the reduced explosion pressure increased with increasing turbulence intensity. This effect was most pronounced for small vents with low activation pressures, e.g. for bursting disks made from polyethylene foil. In this case, the overpressure at an initial turbulence of 0.45 m/s was twice that for zero initial turbulence.  相似文献   

11.
Taking the ' 6·13 ′ major gas explosion accident in Shiyan, Hubei Province, China as an example, three problems were studied in this work: (1)The determination of the volume of natural gas involved in the explosion; (2)The propagation process of shock wave inside the building and the damage evolution process of the accident-related building; (3)The overpressure and fragment injury to the person outside the building. Through the numerical simulation in ANSYS/LS-DYNA software, the volume of natural gas involved in the explosion is determined to be 10240 × 1400 × 400 cm (length × width × height) from three perspectives: the damage to the building, the distribution of overpressure inside the building, and the TNT equivalent of the explosion energy. The simulation results are in good line with the accident, which verifies the effectiveness of the scheme and the accuracy of the numerical model. Based on the reasonable filling scheme, the propagation process of shock waves inside the building, the damage evolution process of the building, and the injury ranges of overpressure and fragments outside the building are analyzed. It can be found that the propagation of shock waves in confined space is complex and variable. The explosion shock waves are first reflected and superimposed in the watercourse, resulting in pressure rise. At about 8ms, the shock waves rushed into the first-floor space of the building, and the maximum overpressure was about 0.56 MPa. At about 50 ms, the shock waves rushed into the second-floor space, and the maximum overpressure was about 0.139 MPa. The first and second-floor slabs and infilled walls were almost completely destroyed. The interior walls of the infilled walls are mainly collapsed, and the exterior walls are ejection around the building as the center. The peak displacement and peak velocity of the interior walls of each floor are about 15% of the exterior walls. The fragments which cause fragment injury mainly come from the retaining wall above the watercourse, the maximum velocity is about 89 m/s, and the maximum displacement is 8.9 m. The safety distance of fragment injury is about 8.8 m, while the safety distance of overpressure injury is about 4.6 m. The lethal distance of fragment injury is greater than that of overpressure injury. Compared with the distance between different damage levels of overpressure injury, the difference in fragment injury is small. Therefore, the safety assessment at the engineering level only needs to consider the safety distance of fragment injury. This study can provide suggestions for evaluating the damage of natural gas cloud explosions in confined spaces and is helpful for accident investigation and safety protection.  相似文献   

12.
An experimental system including pressure transducer, electric spark ignition device, data acquisition and control unit was set up to investigate methane–air explosions in a horizontal pipe closed at both ends with or without the presence of obstacles and deposited coal dust. The experimental results show that explosion characteristics depended on the methane content, on the layout of obstacles, and on the deposited coal dust. Pressure fluctuation with a frequency of 150 Hz appeared in its crest when the methane content was close to the stoichiometric ratio (9.5% methane percentage by volume). The pressure rise rate increased locally when a single obstacle was mounted in the pipe, but it had little effect on the pressure peak. Repeated obstacles mounted in the pipe caused the pressure to rise sharply, and the mean maximum explosion overpressure increased with the increase of the obstacle’s number. The amplitude of pressure fluctuation was reduced when deposited coal dust was paved in the bottom of the pipe. However, when repeated obstacles were arranged inside, the maximum overpressures were higher with coal dust deposited than pure gas explosions.  相似文献   

13.
Damage caused by the 2005 Buncefield explosion indicates pressures in excess of 2000 mbar over all of the area covered by the vapour cloud. Such high overpressures are normally associated with high (super-sonic) rates of flame spread. On the other hand, evidence from witnesses, building damage analysis and CCTV cameras all suggest the average rate of progress of the explosion flame front was only around 150 m/s.The high overpressures in the cloud and low average rate of flame advance can be reconciled if the rate of flame advance was episodic, with periods of very rapid combustion being punctuated by pauses when the flame advanced very slowly. The widespread high overpressures were caused by the rapid phases of combustion; the low average speed of advance was caused by the pauses.Mechanisms of flame spread through radiative ignition of particulates ahead of the flame front provide possible explanations for such unusual episodic behaviour.The first part of this paper reviews a wide range of empirical evidence on average flame speed and rate of blast pressure increase.The second part explores the theoretical consequences of forward radiation and how the new theory might be developed into a practical means of assessment.  相似文献   

14.
To evaluate the hazard of combined hydrogen/dust explosions under severe accident conditions in International Thermonuclear Experimental Reactor (ITER), standard method of 20-L-sphere was used to measure the explosion indices of 4-μm fine graphite dust in lean hydrogen/air mixtures. The mixtures were ignited by a weak electric spark. The tested fuel concentrations were 8–18 vol% H2 and 25–250 g/m3 dust. If the hydrogen content is higher than 10 vol%, the dust constituent can be induced to explode by the hydrogen explosion initiated by a weak electric spark. Depending on the fuel component concentrations, the explosions proceed in either one or two stages. In two-stage explosions occurring at low hydrogen and dust concentrations, the mixture ignition initiates first a fast hydrogen explosion followed by a slower phase of the dust explosion. With increasing dust concentration, the dust explodes faster and can overlap the hydrogen-explosion stage. At higher hydrogen concentrations, the hybrid mixtures explode in one stage, with hydrogen and dust reacting at the same time scale. Maximum overpressures of hybrid explosions are higher than those observed with hydrogen alone; maximum rates of pressure rise are lower in two-phase explosions and, generally, higher in one-stage explosions, than those characteristic of the corresponding H2/air mixtures.  相似文献   

15.
Experimental data from vented explosion tests using gasoline-air mixtures with concentrations from 0.88 to 2.41% vol. are presented. A 2L vessel was used for the tests with vent sizes of 25 cm2, 50 cm2 and 100 cm2. The tests were focused on the effect of gasoline vapor concentration and vent size on the pressure development and the flame behavior inside and outside the vessel. It was found that the inner flame propagation speed was mainly dependent on the initial concentration, while the maximum flame spreading distance was mainly influenced by the vent size. The external flame speed and duration could be influenced by the combination of the two properties. The internal pressure increases gradually with the flame propagated inside the vessel and decreased sharply when the vent failed. High-pressure durations containing pressure peaks were recorded by transducers in front of the vent and oscillations could be observed besides the vent. At any measure point, the maximum external pressures for A = 25 cm2 or 50 cm2 were significantly larger than those for A = 100 cm2.  相似文献   

16.
The research activities in the project Assessing the Influence of Real Releases on Explosions (AIRRE) included a unique series of large-scale explosion experiments with high-momentum jet releases directed into congested geometries with subsequent ignition. The primary objective for the AIRRE project was to gain improved understanding of the effect that realistic releases and turbulent flow conditions have on the consequences of accidental gas explosions in the petroleum industry. A secondary objective was to develop a methodology that can facilitate safe and optimal design of process facilities. This paper presents selected results from experiments involving ignition of a highly turbulent gas cloud, generated by a large-scale, pressurised release of natural gas. The paper gives an overview of the effect on maximum explosion overpressures of varying the ignition position relative to the release point of the jet and a congested region placed inside the flammable cloud, with either a high or a medium level of congestion. For two of the tests, involving a jet release and the medium congestion rig, the maximum overpressures significantly exceeded those obtained in a quiescent reference test. The paper presents detailed results for selected tests and discusses the effect of the initial flow field generated by realistic releases – including turbulence, net flow and concentration gradients – on relevant explosion phenomena.  相似文献   

17.
In order to study the influence of vacuum degree on gas explosion suppression by vacuum chamber, this study used the 0.2 mm thick polytetrafluoroethylene film as the diaphragm of vacuum chamber to carry out a series of experiments of gas explosion suppression by vacuum chamber with the vacuum degree from −0.01 MPa to −0.08 MPa. The experimental results show that: under the condition of any vacuum degree, vacuum chamber can effectively suppress the explosion flame and overpressure; as vacuum degree changes, the effect of gas explosion suppression using vacuum chamber is slightly different. Vacuum chamber has obvious influence on propagation characteristics of the explosion flame. After explosion flame passes by vacuum chamber, the flame signal weakens, the flame thickness becomes thicker, and the flame speed slows down. With the increase of the vacuum degree of vacuum chamber, the flame speed can be prevented from rising early by vacuum chamber. The higher the vacuum degree is, the more obviously the vacuum chamber attenuates the explosion overpressure, the smaller the average overpressure is, and the better effect of the gas explosion suppression is. Vacuum chamber can effectively weaken the explosion impulse under each vacuum degree. From the beginning of −0.01 MPa, the vacuum chamber can gradually weaken explosion impulse as the vacuum degree increases, and the effect of gas explosion suppression gradually becomes better. When the vacuum degree is greater than −0.04 MPa, the increase of vacuum degree can make the explosion overpressure decrease but have little influence on the explosion impulse. Therefore, the vacuum chamber has the preferable suppression effect with equal to or greater than −0.04 MPa vacuum degree.  相似文献   

18.
为了减少管内气体爆炸造成的损失与破坏,基于大涡模拟LES模型和Zimont燃烧模型,研究泄爆尺寸(直径为40,60,80 mm)和泄爆位置(侧方距点火端1,3,5 m)等泄爆条件对受限空间中氢气燃爆特性的影响。研究结果表明:大孔径泄爆口更好的排放效果造成火焰锋面在通过泄爆口时发生严重畸变,而泄爆口与点火端距离的增加则会削弱火焰锋面畸变的程度,且不同尺寸泄爆口产生的泄压效果差异较大。因此,应考虑将合适尺寸的泄爆口设置于靠近易燃点处。通过探索不同泄爆孔径与泄爆口位置对氢气火焰传播的影响规律,可为实际应用中的安全泄爆起到指导性作用。  相似文献   

19.
Results from cornstarch explosion tests using a flameless venting device (mounted over a burst disc) on an 8 m3 vessel are presented and used to determine the overall efficiency of the device, which is defined as the ratio between its effective vent area and the nominal vent area. Because these devices are comprised of an arrestor element mounted over an impulsively-actuated venting device (such as a burst disc), the functional form of the overall efficiency is taken as the product of the area efficiency (i.e., the ratio between the effective vent area of the entire assembly to that of the venting device without the arrestor element) and the burst efficiency (i.e., the ratio of the effective vent area of the venting device without the arrestor element to the nominal vent area). The effective vent areas are calculated from measured overpressures using three different empirical correlations (FM Global 2001, NFPA 2007, and VDI 2002). Furthermore, due to significant variations in the effective reactivity from test to test, a correction factor proportional to the initial flame speed is applied when determining the area efficiency. In general, it was found that the FM Global and NFPA methodologies yield consistent results with less scatter than VDI 3673.  相似文献   

20.
The formation of nitrile rubber (NBR) dust clouds during processing can lead to a potential dust explosion under certain conditions. However, the potential explosion hazard posed by NBR dust is usually overlooked by enterprises. In this paper, the explosive properties of NBR dust are investigated using a Hartmann tube, a G-G furnace, and a 20 L explosion chamber. The results showed that NBR dust could cause explosions severe enough to be classified as St-1. In addition, the thermal decomposition behavior of NBR dust under combustion conditions was investigated using a combination of thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR). The results indicated that in the early stage, NBR dust mainly undergoes self-thermal decomposition to produce a large amount of combustible gas, which combines with oxygen to form a mixed gas and cause a gas-phase explosion. In addition, the participation of oxygen could lower the initial temperature of NBR dust thermal decomposition. As a result, decomposition occurred more quickly and a large amount of combustible gas was produced, thus expanding the range of dust explosions. Furthermore, these combustible gases exhibit varying degrees of toxicity, seriously affecting the life and health safety of relevant personnel. This work provides theoretical guidance for the development of safe procedures to prevent and address problems during NBR dust processing in enterprises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号