首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Ducts are often recommended in the design of dust explosion venting in order to discharge materials to safe locations. However, the maximum reduced overpressure increases in a duct-vented vessel rather than in a simply vented vessel. This needs to be studied further for understanding the duct-venting mechanism. Numerous duct-vented dust explosion experiments were conducted, using a 20 L spherical chamber at elevated static activation overpressures, ranging from 1.8 bar to 6 bar. Duct diameters of 15 mm and 28 mm, and duct lengths of 0 m (simply venting), 1 m and 2 m, were selected. Explosion pressures both in the vessel and in the duct were recorded by pressure sensors, with a frequency of 5 kHz. Flame signals in the duct were also obtained by phototransistors. Results indicate that the secondary explosion occurring in the duct increases the maximum reduced overpressure in the vessel. The secondary explosion is greatly affected by the duct diameter and static activation overpressure, and hence influences the amplification of the maximum reduced overpressure. Larger static activation overpressure decreases the severity of the secondary explosion, and hence decreases the increment in the maximum reduced overpressure. The secondary pressure peak is more obvious as the pressure accumulation is easier in a duct with a smaller diameter. However, the increment of the maximum reduced overpressure is smaller because blockage effect, flame front distortion, and turbulent mixing due to secondary explosion are weaker in a narrow duct. The influence of duct length on the maximum reduced overpressure is small at elevated static activation overpressures, ranging from 1.8 bar to 6 bar at 15 mm and 28 mm duct diameters.  相似文献   

2.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   

3.
A typical building consists of a number of rooms; often with windows of different size and failure pressure and obstructions in the form of furniture and décor, separated by partition walls with interconnecting doorways. Consequently, the maximum pressure developed in a gas explosion would be dependent upon the individual characteristics of the building. In this research, a large-scale experimental programme has been undertaken at the DNV GL Spadeadam Test Site to determine the effects of vent size and congestion on vented gas explosions. Thirty-eight stoichiometric natural gas/air explosions were carried out in a 182 m3 explosion chamber of L/D = 2 and KA = 1, 2, 4 and 9. Congestion was varied by placing a number of 180 mm diameter polyethylene pipes within the explosion chamber, providing a volume congestion between 0 and 5% and cross-sectional area blockages ranging between 0 and 40%. The series of tests produced peak explosion overpressures of between 70 mbar and 3.7 bar with corresponding maximum flame speeds in the range 35–395 m/s at a distance of 7 m from the ignition point. The experiments demonstrated that it is possible to generate overpressures greater than 200 mbar with volume blockages of as little as 0.57%, if there is not sufficient outflow through the inadvertent venting process. The size and failure pressure of potential vent openings, and the degree of congestion within a building, are key factors in whether or not a building will sustain structural damage following a gas explosion. Given that the average volume blockage in a room in a UK inhabited building is in the order of 17%, it is clear that without the use of large windows of low failure pressure, buildings will continue to be susceptible to significant structural damage during an accidental gas explosion.  相似文献   

4.
To further elucidate the influence mechanism of side vents on the dynamic characteristics of gas explosions in tubes is helpful to design more reasonable vent layouts. In this paper, 9.5% methane-air explosion experiments were conducted in a tube with two side-vented ducts, and the effects of vent layouts and vent areas on the dynamic characteristics of explosion overpressure and flame propagation speed were investigated. The results demonstrate that under the same condition with a single vent area of 100 mm × 100 mm, when only the end vent is open, the maximum explosion overpressure and the maximum flame propagation speed are the highest among the five vent layouts. When the side vents 1 and 2 and the end vent are open, the maximum explosion overpressure is the lowest, and an unusual discovery is that the flame front changes into a hemispherical shape, finger shape, quasi-plane shape, tulip shape and wrinkled structure. When only side vent 1 is open, a unique Helmholtz oscillation occurs, and a new discovery is that there is a consistent oscillation relationship among the overpressure, flame propagation speed and flame structure. Helmholtz oscillation occurs only when a single vent area is 100 mm × 100 mm–60 mm × 60 mm, and the oscillation degree decreases with decreasing vent area. During the vent failure stage, the maximum explosion overpressure is generated, the flame front begins to appear irregular shape, and the flame propagation speed shows a prominent characteristic peak. After the vent failure stage, the driving effect of the end vent on the flame is higher than that of the side vent on the flame. Furthermore, the correlation equations of the mathematical relationships among the maximum explosion overpressure Pred, the static activation pressure Pstat and the vent coefficient Kv under four vent layouts are established, respectively.  相似文献   

5.
To effectively prevent and mitigate explosion hazards and casualties, relief venting of flammable gas explosions has been applied in production processes in a broad variety of industries. This work conducted fully vented experiments to investigate the influence of venting membrane thickness, and partially vented experiments to investigate the influence of baffle blocking rate on the explosion characteristics of 9.5 vol% methane-air mixtures in linked vessels with a 0.5 m long vented duct. Results indicate that the membrane thickness and blocking rate for the two types of vented explosions significantly affected the explosion overpressure. The smaller the membrane thickness and blocking rate, the lower the explosion overpressure. Secondary explosions were observed in the vented duct through experiments and a weaker explosion flame appeared at a small blocking rate of 20%. With the further increase in the blocking rate, the flame became extremely weak, and no secondary explosions occurred. The overpressure evolution process at different positions in the explosion duct and secondary explosion phenomenon in the vented duct were investigated. This work could probably serve as an important reference for the selection of technical parameters of explosion venting in the practical industrial processes.  相似文献   

6.
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, Φ ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at Φ = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure.  相似文献   

7.
Explosion venting is a frequently-used way to lower explosion pressure and accident loss. Recently, studies of vessel explosion venting have received much attention, while little attention has been paid to pipe explosion venting. This study researched the characteristics of explosion venting for Coal Bed Methane (CBM) transfer pipe, and proposed the way of explosion venting to chamber in order to avoid the influence of explosion venting on external environment, and investigated the effects of explosion venting to atmosphere and chamber. When explosion venting to atmosphere, the average explosion impulse 4.89 kPa s; when explosion venting to 0 MPa (atmospheric pressure) chamber, average explosion impulse is 7.52 kPa s; when explosion venting to −0.01 MPa chamber, explosion flame and pressure obviously drop, and average explosion impulse decreases to 4.08 kPa s; when explosion venting to −0.09 MPa chamber, explosion flame goes out and average explosion impulse is 1.45 kPa s. Thus, the effect of explosion venting to negative chamber is far better than that to atmospheric chamber. Negative chamber can absorb more explosion gas and energy, increase stretch of explosion flame, and eliminate free radical of gas explosion. All these can promote the effect of explosion venting to negative chamber.  相似文献   

8.
In the present work, a series of experiments have been performed to analyze the explosion characteristics of ethanol-gasoline with various blended ratios (0%, 5%, 10%, 15%, 30%, 50%, 70%, 80%, and 100%). A vented rectangular vessel with a cross-section of 100 mm × 100 mm, 600 mm long and a 40 mm diameter vent on the top is used to carry out the experiments. The flame propagation is recorded by a phantom high-speed camera with 5000 fps, while the histories of the explosion overpressure are measured by two PCB pressure sensors and the explosion sound pressure level is obtained by a CRY sound sensor. The results indicate that the maximum overpressure and flame propagation speed increases linearly as the blended ratio increases when the initial volume of blended fuel is 1.0 mL; While the change of explosion overpressure and flame propagation speed shows a trend of decreasing at first and then increasing as the concentration increases to 1.8 mL. It is also found that the peak of the sound pressure level exceeds 100 dB under all tests, which would damage the human's hearing. What's more, relationships between explosion overpressure and sound pressure level are examined, and the change of the maximum overpressure can be reflected to some extent by the measurement of the maximum sound pressure level. The study is significant to reveal the essential characteristic of the explosion venting process of ethanol-gasoline under different initial blended ratios, and the results would help deepen the understanding of ethanol-gasoline blended fuels explosion and the assessment of the explosion hazardous.  相似文献   

9.
The separation distance (or pitch) between two successive obstacles or rows of obstacles is an important parameter in the acceleration of flame propagation and increase in explosion severity. Whilst this is generally recognised, it has received little specific attention by investigators. In this work a vented cylindrical vessel 162 mm in diameter 4.5 m long was used to study the effect of separation distance of two low blockage (30%) obstacles. The set up was demonstrated to produce overpressure through the fast flame speeds generated (i.e. in a similar mechanism to vapour cloud explosions). A worst case separation distance was found to be 1.75 m which produced close to 3 bar overpressure and a flame speed of about 500 m/s. These values were of the order of twice the overpressure and flame speed with a double obstacle separated 2.75 m (83 characteristic obstacle length scales) apart. The profile of effects with separation distance was shown to agree with the cold flow turbulence profile determined in cold flows by other researchers. However, the present results showed that the maximum effect in explosions is experienced further downstream than the position of maximum turbulence determined in the cold flow studies. It is suggested that this may be due to the convection of the turbulence profile by the propagating flame. The present results would suggest that in many previous studies of repeated obstacles the separation distance investigated might not have included the worst case set up, and therefore existing explosion protection guidelines may not be derived from worst case scenarios.  相似文献   

10.
为了减少管内气体爆炸造成的损失与破坏,基于大涡模拟LES模型和Zimont燃烧模型,研究泄爆尺寸(直径为40,60,80 mm)和泄爆位置(侧方距点火端1,3,5 m)等泄爆条件对受限空间中氢气燃爆特性的影响。研究结果表明:大孔径泄爆口更好的排放效果造成火焰锋面在通过泄爆口时发生严重畸变,而泄爆口与点火端距离的增加则会削弱火焰锋面畸变的程度,且不同尺寸泄爆口产生的泄压效果差异较大。因此,应考虑将合适尺寸的泄爆口设置于靠近易燃点处。通过探索不同泄爆孔径与泄爆口位置对氢气火焰传播的影响规律,可为实际应用中的安全泄爆起到指导性作用。  相似文献   

11.
In order to study the influence of vacuum degree on gas explosion suppression by vacuum chamber, this study used the 0.2 mm thick polytetrafluoroethylene film as the diaphragm of vacuum chamber to carry out a series of experiments of gas explosion suppression by vacuum chamber with the vacuum degree from −0.01 MPa to −0.08 MPa. The experimental results show that: under the condition of any vacuum degree, vacuum chamber can effectively suppress the explosion flame and overpressure; as vacuum degree changes, the effect of gas explosion suppression using vacuum chamber is slightly different. Vacuum chamber has obvious influence on propagation characteristics of the explosion flame. After explosion flame passes by vacuum chamber, the flame signal weakens, the flame thickness becomes thicker, and the flame speed slows down. With the increase of the vacuum degree of vacuum chamber, the flame speed can be prevented from rising early by vacuum chamber. The higher the vacuum degree is, the more obviously the vacuum chamber attenuates the explosion overpressure, the smaller the average overpressure is, and the better effect of the gas explosion suppression is. Vacuum chamber can effectively weaken the explosion impulse under each vacuum degree. From the beginning of −0.01 MPa, the vacuum chamber can gradually weaken explosion impulse as the vacuum degree increases, and the effect of gas explosion suppression gradually becomes better. When the vacuum degree is greater than −0.04 MPa, the increase of vacuum degree can make the explosion overpressure decrease but have little influence on the explosion impulse. Therefore, the vacuum chamber has the preferable suppression effect with equal to or greater than −0.04 MPa vacuum degree.  相似文献   

12.
There is a noticeable discrepancy in the ability to control reduced explosion overpressure between flat bursting panels and curved bursting panels with the same static activation overpressure. Flat bursting plates were observed to leak at approximately 80% of the static activation overpressure lower than curved bursting plates. A new experimental technique is proposed in our paper. Three different vent areas of flat and curved bursting panels were tested, there was significant difference in structural stiffness between flat bursting panels and curved bursting panels, which is the reason the discrepancy in the ability to control reduced explosion overpressure. The structural stiffness of the flat bursting panels is poorer than that of the other, and a greater deformation of the flat bursting panels occurs under the same load. The membrane stress caused by the explosion overpressure therefore produces a larger value in the flat bursting panels which causes it to open prematurely. Moreover, the smaller the vent area that is, the more significant discrepancy in controlling the reduced explosion overpressure between both bursting panels is. This experimental and theoretical result in our paper provides some useful experience for the method of explosion venting.  相似文献   

13.
Low-concentration gas transported in pipelines may lead to explosion accidents because gas with a concentration of less than 30% is prone to explode. To reduce the incidence of gas explosions, water sealing of fire barriers is implemented, and explosion venting devices are installed along the pipeline. To investigate their suppression effect on low-concentration gas explosion, experiments using methane–air premixed gas under different conditions were implemented on a DN500 pipeline test system. The effects of three types of explosion venting forms (rupture disc, asbestos board, and plastic film) on explosion overpressure and flame were compared and analysed. Results show that the rupture disc, asbestos board, and plastic film can achieve adequate explosion venting, causing the peak decay rates of explosion overpressure to reach 82.37%, 81.72%, and 90.79%, respectively. The foregoing indicates that the greater the static activation pressure of the explosion venting form, the higher the peak explosion overpressure at each measurement point. Moreover, the shorter the explosion flame duration, the greater the flame propagation velocity. The research results provide an essential theoretical foundation for the effective suppression of gas explosion accidents in the process of low-concentration gas transportation.  相似文献   

14.
Results from cornstarch explosion tests using a flameless venting device (mounted over a burst disc) on an 8 m3 vessel are presented and used to determine the overall efficiency of the device, which is defined as the ratio between its effective vent area and the nominal vent area. Because these devices are comprised of an arrestor element mounted over an impulsively-actuated venting device (such as a burst disc), the functional form of the overall efficiency is taken as the product of the area efficiency (i.e., the ratio between the effective vent area of the entire assembly to that of the venting device without the arrestor element) and the burst efficiency (i.e., the ratio of the effective vent area of the venting device without the arrestor element to the nominal vent area). The effective vent areas are calculated from measured overpressures using three different empirical correlations (FM Global 2001, NFPA 2007, and VDI 2002). Furthermore, due to significant variations in the effective reactivity from test to test, a correction factor proportional to the initial flame speed is applied when determining the area efficiency. In general, it was found that the FM Global and NFPA methodologies yield consistent results with less scatter than VDI 3673.  相似文献   

15.
The effect of internal shape of obstacles on the deflagration of premixed methane–air (concentration of 10%) was experimentally investigated in a semi-confined steel pipeline (with a square cross section size of 80 mm × 80 mm and 4 m long). The obstacles used in this study were circular, square, triangular and gear-shaped (4-teeth, 6-teeth and 8-teeth) orifice plates with a blockage ratio of 75%, and the perimeter of the orifice was regarded as a criterion for determining the sharpness of the orifice plate. The overpressure history, flame intensity histories, flame front propagation speed, maximum flame intensity and peak explosion overpressure were analyzed. The explosion in the pipeline can be divided into two stages: initial explosion and secondary explosion. The secondary explosion is caused by recoiled flame. The perimeter is positively related to the intensity of the recoiled flame and the ability of orifice plate to suppress the explosion propagation. In addition, the increase in the perimeter will cause the acceleration of the flame passing through the orifice plate, while after the perimeter of the orifice reaches a certain value, the effect of the increase in perimeter on explosion excitation becomes no obvious. The overpressure (static pressure) downstream of the orifice plate is the result of the combined effect of explosion intensity and turbulence. The increase in perimeter leads to the increase in turbulence downstream of the orifice plate which in turn causes more explosion pressure to be converted into dynamic pressure.  相似文献   

16.
This study investigated methane-air explosion in tunnel-shape space and developed an overpressure-time history model based on numerical results. The findings revealed that for the progressively vented gas explosion with movable steel obstacles in a 20 m long tunnel, the inner peak overpressure increased as the activation pressure of the tunnel top cover got higher but remained below 6 bar. However, as the activation pressure increased to 8 bar or higher, the peak inner overpressure remained unchanged. As the segment cover panel became wider, the peak pressure was almost unchanged, but the pressure duration and impulse declined significantly. The peak pressure and impulse increased as the tunnel length vary from 10 to 30 m. With fixed tunnel length, higher blast pressure but lower impulse was observed as the inner obstacles were closer or the activation pressure of obstacles was higher. It is also found that a local enlarged space in the tunnel enhanced the peak pressure significantly. An overpressure time history model for the tunnel with fixed top cover and enlarged end zone was established. The model considered activation pressure of vent cover, area and length of vent opening, methane concentration, number and blockage ratio of fixed obstacles was developed to calculate the overpressure and corresponding time at characteristic points of the pressure-history curve. The cubic Hermite interpolation algorithm and a specially tuned formula consisting of the power and exponential function were used to interpolate pressure values between characteristic points. The proposed model can predict both the peak pressure and the overpressure time history with acceptable accuracy.  相似文献   

17.
利用球型容器与管道组合,开展连通容器气体爆炸与泄爆实验,分析连通条件下,火焰在管道中的传播过程及其对起爆容器和传爆容器的压力影响。实验结果表明:连通容器气体爆炸中,火焰从起爆容器到传爆容器传播经历了一段不断加速,但加速度不断减小的过程;泄爆过程中,火焰传播过程与密闭爆炸时基本一致。管道中火焰加速传播,使得传爆容器的爆炸压力和强度相较于作为起爆容器时均明显增加,危险更大,采用与起爆容器相同的泄爆面积,无法满足对连通容器中传爆容器的泄爆。同时,泄爆是一个快速的能量泄放过程应选择合理的泄爆方式,防止二次危害。  相似文献   

18.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

19.
Experiments about the influence of ultrafine water mist on the methane/air explosion were carried out in a fully sealed visual vessel with methane concentrations of 8%, 9.5%, 11% and 12.5%. Water mists were generated by two nozzles and the droplets' Sauter Mean Diameters (SMD) were 28.2 μm and 43.3 μm respectively which were measured by Phase Doppler Particle Anemometer (PDPA). A high speed camera was used to record the flame propagation processes. The results show that the maximum explosion overpressure, pressure rising rate and flame propagation velocity of methane explosions in various concentrations increased significantly after spraying. Furthermore, the brightness of explosion flame got much higher after spraying. Besides, the mist with a larger diameter had a stronger turbulent effect and could lead to a more violent explosion reaction.  相似文献   

20.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号