首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to the current international standards, to perform the correct evaluation of the explosion and flammability parameters, a uniform distribution of the dust particles should be achieved inside the 20 L and/or 1 m3 standard vessels.CFD simulations have shown that in both standard test vessels (20 L and 1 m3), the dust particles are not uniformly dispersed, being mostly concentrated at the edge of the macro-vortices generated by the injection of the fluid and particle through the nozzle. In addition, only a partial fed of the particles is obtained, and dust particles sedimentation phenomena can occur.As a result, the dust participating to the reactive process may be much lower than the expected nominal concentration in the vessel due to sedimentation and incomplete feeding. Consequently, misleading values of the flammability/explosion parameters could be measured.Particle sedimentation and incomplete feeding depends both on the Stokes number and on the Reynolds number, whereas the concentration distribution depends on the turbulence level, the fluid flow maps, and the number of particles which enter into the vessel through the nozzle.The aim of this work is to evaluate the key parameters (particle size, particle density, and fluid velocity) affecting sedimentation and incomplete feeding in 20 L vessel. To this end, CFD simulations of dust dispersion are performed at varying the particle density and size. Operating maps, in terms of the key parameters and/or their dimensionless combinations, are developed and a correlation for correction of the data is proposed.  相似文献   

2.
Measurements of flammability and explosion parameters for dust/air mixtures require uniform dispersion of the dust cloud inside the test vessel. In a previous work, we showed that, in the standard 20 L sphere, the dust injection system does not allow generation of a uniform cloud, but rather high gradients of dust concentration are established. In this work, we used a previously validated three-dimensional CFD model to simulate the dust dispersion inside the 20 L sphere at different dust nominal concentrations (and fixed dust diameter). Results of numerical simulations have shown that, as the dust nominal concentration is increased, sedimentation prevails and, thus, when ignition is provided, the dust is mainly concentrated at the vessel walls.  相似文献   

3.
There are at least two main requirements for repeatable and reliable measurements of flammability and explosibility parameters of dusts: a uniform dispersion of solid particles inside the test vessel, and a homogeneous degree of turbulence. In several literature works, it has been shown that, in the standard 20 L sphere, the dust injection system generates a non-uniform dust cloud, while high gradients characterize the turbulent flow field. In this work, the dust dispersion inside the 20 L sphere was simulated for nicotinic acid/anthraquinone mixtures (with different pure dust ratios, while keeping the total dust concentration constant) with a validated three-dimensional CFD model. Numerical results show that the fields of dust concentration, flow velocity and turbulence are strongly affected by both diameter and density of the pure dusts. These different dust properties lead to segregation phenomena with the formation of zones richer in one component and leaner in the other one and vice versa, and also result in preferential paths for the solid particles inside the sphere. Overall, the obtained results highlight the need for developing a dust injection system able to overcome the shortcomings of the actual one even when testing dust mixtures.  相似文献   

4.
A dispersion of fine particles in the air is needed for a dust explosion to occur since an explosion is the fast combustion of particles in the air. When particles are poorly dispersed, agglomerated, or their concentration is low, the combustion velocity decreases, and deflagration would not occur. The combustion rate is strictly related to dust concentration. Therefore, the maximum explosion pressure rise occurs at dust concentration close to stoichiometric. Conversely, Minimum Explosion Concentration (MEC) is the lower limit at which self-sustained combustion and a pressure rise are possible. Dust explosion tests are designed to reproduce the dispersion and generation of dust clouds in industrial ambiences by using dispersion devices activated by pressurised air pulses. The resulting dust cloud, which has a marked transient character, is considered representative of real clouds by current standards. Over time, several studies have been carried out to optimise these devices (e.g. to reduce the inhomogeneity of the cloud in the 20 L sphere). The Minimum Ignition Energy (MIE) of dust is measured using the Mike3 modified Hartmann tube, where the ignition attempt is made 60–180 ms after dust dispersion regardless of dust characteristics.This work investigates the dust clouds’ actual behaviour inside the modified Hartmann tube before ignition using high-velocity video movies and a new image post-treatment method called Image Subtraction Method (ISM). Movies are recorded with high-speed cameras at a framerate of 2000 fps and elaborated with an on-purpose developed LabVIEW® code. Concentration (mass per volume) and dispersion pressure are varied to evaluate their effect on dust clouds. Maise starch, iron powder and silica powder are chosen to investigate the effect of particle density and size on the cloud structure and turbulence. This approach will help to investigate the structure of the dust cloud, the shape and size of the particle lumps and the change in dust concentration over time. In addition, information on the actual concentration and cloud turbulence at the ignition location and delay time were obtained, which may help identify the local turbulence scale and widen the characterisation of the cloud generated in the Hartmann tube.  相似文献   

5.
A correlation of the lower flammability limit for hybrid mixtures was recently proposed by us. The experimental conditions including ignition energy and turbulence which play a primary role in a gas or dust explosion were at fixed values. The sensitivity of such experimental conditions to the accuracy of the proposed formula was not thoroughly discussed in the previous work. Therefore, this work studied the effect of varying the ignition energy and turbulence intensity to the formula proposed in our previous paper. For ignition energy effect, results from methane/niacin mixture demonstrated that the MEC and LFL will not be affected by changing ignition energy. There is no distinguishable difference among gas explosion index (KG) and dust explosion index (KSt) derived from tests with every ignition energy (2.5 kJ, 5 kJ and 10 kJ) in a 36 L vessel. The proposed formula is independent of ignition energy. For turbulence effect, the proposed formula can have a good prediction of the explosion and non-explosion zone if the ignition delay time is within a certain range. The formula prediction is good as the ignition delay time increases up to 100 ms in this work. Propane/niacin and propane/cornstarch mixtures are also tested to validate the proposed formula. It has been confirmed that the proposed formula predicts the explosion and non-explosion zone boundary of such mixtures.  相似文献   

6.
According to standard procedures, flammability and explosion parameters for dusts and dust mixtures are evaluated in 20 L and/or 1 m3 vessels, with equivalent results provided a correct ignition delay time (60 ms in the 20 L vessel; 600 ms in the 1 m3 vessel). In this work, CFD simulations of flow field and dust concentration distribution in the 1 m3 spherical vessel are performed, and the results compared to the data previously obtained for the 20 L. It has been found that in the 1 m3 vessel, the spatial distribution of the turbulent kinetic energy is lower and much more uniform. Concerning the dust distribution, as in the case of the 20 L, dust is mainly concentrated at the outer zones of the vortices generated inside the vessel. Furthermore, an incomplete feeding is attained, with most of the dust trapped in the perforated annular nozzle. Starting from the maps of dust concentration and turbulent kinetic energy, the deflagration index KSt is calculated in both vessels. In the conditions of the present work, the KSt is found to be 2.4 times higher in the 20 L than in the 1 m3 vessel.  相似文献   

7.
为分析不同粉尘因密度的差异对20 L球形爆炸装置球罐内粉尘分散过程流场变量变化和点火延迟时间的影响,利用CFD数值模拟的方法,研究了3种不同密度的粉尘在球罐分散过程中湍流动能、流场速度、粉尘浓度3种流场变量在球心处的变化规律。研究结果表明:在其他条件一致的情况下,粉尘密度越小,湍流动能的峰值越小,粉尘云浓度和流场速度的峰值则越大;粉尘密度对湍流动能的增值速率没有影响,而粉尘密度越小,流场速度和粉尘浓度的增值速率越快,粉尘浓度衰减至稳定值的时间也越短。表明粉尘密度越小,点火延迟时间也越小,因此,建议铝粉点火延迟时间在50~60 ms之间,锆粉和锌粉在60~80 ms之间。  相似文献   

8.
Among the factors influencing dust explosion, the particle size distribution (PSD) is both one of the most important and complex to consider. For instance, it is commonly accepted that the explosion sensitivity increases when the particle size decreases. Such an assertion may be questionable for nano-objects which easily agglomerate. However, agglomerates can be broken during the dispersion process. Correlating the explosion parameters to the actual PSD of a dust cloud at the moment of the ignition becomes then essential. The effects of the moisture content and sieving were investigated on a nanocellulose powder and the impact of a mechanical agglomeration was evaluated using a silicon coated by carbon powder. Each sample was characterized before and after dispersion using in situ laser particle size measurement and a fast mobility particle sizer, and explosion and minimum ignition energy tests were conducted respectively in a 20 L sphere and in a modified Hartmann tube. It was observed that drying and/or sieving the nanocellulose mainly led to variations in terms of ignition sensitivity but only slightly modified the explosion severity. In contrast, the mechanical agglomeration of the silicon coated by carbon led to a great decrease in terms of ignition sensitivity, with a minimum ignition energy varying from 5 mJ for the raw powder to more than 1J for the agglomerated samples. The maximum rate of pressure rise also decreased due to modifications in the reaction kinetics, inducing a transition from St2 class to St1 class when agglomerating the dust.  相似文献   

9.
为解决常规水幕除尘装置阻隔巷道或隧道的问题,基于势流叠加原理,推导缝隙喷口边界流线方程,构造喷口流线型边界线.在SolidWorks中利用流线型边界线形成二维面,拉伸得到三维结构;针对该喷口及现有锥形缝隙喷口,采用CFD软件中的Realizable k-ε湍流模型,完成内部流场的数值模拟.研究结果表明:入水口附近存在流...  相似文献   

10.
To avoid the influence of external parameters, such as the vessel volume or the initial turbulence, the explosion severity should be determined from intrinsic properties of the fuel-air mixture. Therefore, the flame propagation of gaseous mixtures is often studied in order to estimate their laminar burning velocity, which is both independent of external factors and a useful input for CFD simulation. Experimentally, this parameter is difficult to evaluate when it comes to dust explosion, due to the inherent turbulence during the dispersion of the cloud. However, the low inertia of nanoparticles allows performing tests at very low turbulence without sedimentation. Knowledge on flame propagation concerning nanoparticles may then be modelled and, under certain conditions, extrapolated to microparticles, for which an experimental measurement is a delicate task. This work focuses on a nanocellulose with primary fiber dimensions of 3 nm width and 70 nm length. A one-dimensional model was developed to estimate the flame velocity of a nanocellulose explosion, based on an existing model already validated for hybrid mixtures of gas and carbonaceous nanopowders similar to soot. Assuming the fast devolatilization of organic nanopowders, the chemical reactions considered are limited to the combustion of the pyrolysis gases. The finite volume method was used to solve the mass and energy balances equations and mass reactions rates constituting the numerical system. Finally, the radiative heat transfer was also considered, highlighting the influence of the total surface area of the particles on the thermal radiation. Flame velocities of nanocellulose from 17.5 to 20.8 cm/s were obtained numerically depending on the radiative heat transfer, which proves a good agreement with the values around 21 cm/s measured experimentally by flame visualization and allows the validation of the model for nanoparticles.  相似文献   

11.
The explosion behaviour of heterogeneous/homogeneous fuel-air (hybrid) mixtures is here analysed and compared to the explosion features of heterogeneous fuel-air and homogeneous fuel-air mixtures separately.Experiments are performed to measure the pressure history, deflagration index and flammability limits of nicotinic acid/acetone-air mixtures in a standard 20 L Siwek bomb adapted to vapour-air mixtures. Literature data are also used for comparison.The explosion tests performed on gas-air mixtures in the same conditions as explosion tests of dust-air mixtures, show that the increase in explosion severity of dust/gas-air mixtures has to be addressed to the role of initial level of turbulence prior to ignition.At a fixed value of the equivalence ratio, by substituting the dust to the flammable gas in a dust/gas-air mixture the explosion severity decreases. Furthermore, the most severe conditions of dust-gas/air mixtures is found during explosion of gas-air mixture at stoichiometric concentration.  相似文献   

12.
Explosion behaviors of typical light metal and carbonaceous dusts induced by different ignition energies were investigated based on systematic experiments in a Siwek 20 L vessel. Comparative analysis reveals that the explosion mechanism of carbonaceous dust is the volatile combustion, whereas the mechanism for light metal dust mainly features the surface heterogeneous oxidation. Influences of ignition energy on severity and flammability limit are much more significant for carbonaceous dust than light metal, especially for the powder with less volatile. An innovative approach was introduced to derive flame thickness from the pressure–time trace. The relation between explosion induction time and combustion duration of ignitor was also analyzed. Results show inappropriate ignition energy will cause under-/over-driving in the thermodynamic/kinetic characteristic measurements. In this way, a dimensionless parameter pressure ratio was introduced to evaluate the under-driving, while two methods by using flame thickness and induction time respectively, were proposed to evaluate over-driving. To improve the accuracy of dust explosion tests, authors advocate that explosion severity determination should be conducted at the critical ignition energy. Moreover, a comparison between the European and Chinese flammability limit determination procedures was also conducted, indicating that EN 14034-3 is suitable for light metal but not for carbonaceous, while GB/T 16425 appears to be slightly conservative for both carbonaceous and light metal dusts.  相似文献   

13.
This paper presents the explosion parameters of corn dust/air mixtures in confined chamber. The measurements were conducted in a setup which comprises a 5 L explosion chamber, a dust dispersion sub-system, and a transient pressure measurement sub-system. The influences of the ignition delay on the pressure and the rate of pressure rise for the dust/air explosion have been discussed based on the experimental data. It is found that at the lower concentrations, the explosion pressure and the rate of pressure rise of corn dust/air mixtures decrease as the ignition delay increases from 60 ms; But at the higher concentrations, the explosion pressure and the rate of pressure rise increase slightly as the ignition delay increases from 60 ms to 80 ms, and decrease beyond 80 ms. The maximum explosion pressure of corn dust/air mixtures reaches its highest value equal to 0.79 MPa at the concentration of 1000 gm−3.  相似文献   

14.
For the development of a standardized method for measuring the explosion safety characteristics of combustible hybrid dust/vapor mixtures, the influence of the ignition delay time needs to be investigated. The ignition delay time, defined as the time between the injection of dust and the activation of the ignition source, is related to the turbulence of the mixture and thus to the pressure rise rate. The ignition source for pure vapors, however, has to be activated in a quiescent atmosphere according to the standards. Nevertheless, when measuring the explosion safety characteristics of hybrid mixtures, it is important that the dust be in suspension around the igniter. Like pure dust/air mixtures, hybrid dust/vapor/air mixtures need to be ignited in a turbulent atmosphere to keep the dust in suspension.This work will therefore investigate the influence of ignition delay times on the severity of hybrid explosions. It was generally found that at shorter ignition delay times, (dp/dt)ex increased due to higher turbulence and decreases as the dust sinks to the bottom of the 20 L-sphere. This effect is more pronounced for hybrid mixtures with higher vapor content compared to dust content.  相似文献   

15.
The Siwek 20-L chamber is widely used throughout the world to evaluate the explosibility of dusts. This research evaluated the quality of dust dispersion in the Siwek 20-L chamber using Pittsburgh coal, Gilsonite, and purple K dusts. A Pittsburgh Research Laboratory (PRL) optical dust probe was used to measure optical transmittance through the dust cloud at various locations within the chamber. A total of 540 tests were performed, with triplicate tests at five nominal dust concentrations and six locations. The two standard dispersion nozzles (rebound and perforated annular nozzle) were compared. The transmissions corresponding to the normal ignition delay period were used to: (a) determine variations in spatial uniformity of dispersion obtained with both nozzles; (b) make comparisons between the experimental transmission data and those calculated from theory for the three dusts; and (c) make comparisons with transmission data measured in the PRL 20-L and Fike 1-m3 dust explosion chambers.The uniformity of dispersion for the three dusts was similar with both nozzles, despite the differences in nozzle geometry and mode of operation. Transmission data of the three dusts were all significantly lower than those calculated from theory. This was discovered to be, in part, due to significant reduction in particle size that occurred during dispersion. By measuring particle sizes before and after dispersion, values of 60%, 50%, and 20% reduction in particle size (based on the surface-weighted mean diameter) were obtained for Pittsburgh coal, Gilsonite, and purple K, respectively. Transmission data from the PRL 20-L, Fike 1-m3 and the Siwek 20-L chambers indicated comparable results in terms of uniformity of dispersion. However, transmission data from the Siwek 20-L chamber were significantly lower than those of the PRL and Fike chambers. Again, this was attributed, in part, to the significant reduction in particle size that occurred during dispersion in the Siwek chamber. The design of the outlet (dispersion) valve of the Siwek 20-L apparatus charge vessel was largely responsible for the particle break-up. The contribution to particle break-up by the dispersion nozzles and the high level of turbulence in the chamber were found to be minimal. This is a significant finding in that the dust particle size tested for explosibility in the Siwek chamber is considerably smaller than the original dust sample.  相似文献   

16.
Explosion pressures are determined for rich methane–air mixtures at initial pressures up to 30 bar and at ambient temperature. The experiments are performed in a closed spherical vessel with an internal diameter of 20 cm. Four different igniter positions were used along the vertical axis of the spherical vessel, namely at 1, 6, 11 and 18 cm from the bottom of the vessel. At high initial pressures and central ignition a sharp decrease in explosion pressures is found upon enriching the mixture, leading to a concentration range with seemingly low explosion pressures. It is found that lowering the ignition source substantially increases the explosion pressure for mixtures inside this concentration range, thereby implying that central ignition is unsuitable to determine the explosion pressure for mixtures approaching the flammability limits.  相似文献   

17.
The use of computational fluid dynamics (CFD) models to simulate LNG vapor dispersion scenarios has been growing steadily over the last few years, with applications to LNG spills on land as well as on water. Before a CFD model may be used to predict the vapor dispersion hazard distances for a hypothetical LNG spill scenario, it is necessary for the model to be validated with respect to relevant experimental data. As part of a joint-industry project aimed at validating the CFD methodology, the LNG vapor source term, including the turbulence level associated with the evaporation process vapors was quantified for one of the Falcon tests.This paper presents the method that was used to quantify the turbulent intensity of evaporating LNG, by analyzing the video images of one of the Falcon tests, which involved LNG spills onto a water pond. The measured rate of LNG pool growth and spreading and the quantified turbulence intensity that were obtained from the image analysis were used as the LNG vapor source term in the CFD model to simulate the Falcon-1 LNG spill test. Several CFD simulations were performed, using a vaporization flux of 0.127 kg/m2 s, radial and outward spreading velocities of 1.53 and 0.55 m/s respectively, and a range of turbulence kinetic energy values between 2.9 and 28.8 m2/s2. The resulting growth and spread of the vapor cloud within the impounded area and outside of it were found to match the observed behavior and the experimental measured data.The results of the analysis presented in this paper demonstrate that a detailed and accurate definition of the LNG vapor source term is critical in order for any vapor cloud dispersion simulation to provide useful and reliable results.  相似文献   

18.
随着现代工业的发展,粉尘爆炸事故发生的频率也逐年增加,因此,对粉尘云点火敏感程度进行测量和计算就变得十分重要。粉尘云最小点火能是粉尘爆炸重要的特性参数之一,是采取粉尘爆炸防护的基础。最小点火能在测量的过程中受到多个敏感条件的影响,其中湍流则是最复杂的影响因素之一。文中对实验过程中粉尘云的湍流进行了定义,并分析了湍流对粉尘云最小点火能影响的内在原因;同时对通过数值模拟计算粉尘云最小点火能过程中的湍流计算给出了数学模型。从实验和数学模型两个方向对湍流进行了全面描述,对粉尘云电火花点火过程中湍流影响的分析结论,可有效的指导实验。  相似文献   

19.
The 20L sphere is one of the standard devices used for dust explosivity characterization. One concern about the effectiveness and reliability of this test is related to the particle size variation due to particles' agglomeration and de-agglomeration. These phenomena are related to the turbulent regime of the dust cloud during the dispersion. This variable must be considered since it determines the uncertainty level of the ignitability and severity parameters of dust combustion. In this context, this study describes the influence of the cloud turbulence on the dust segregation and fragmentation through a study combining both, experimental and computational approaches. The behavior of the gas-solid mixture evidenced with the standard rebound nozzle was compared with that observed with six new nozzle geometries. Thereafter, the time-variation of the Particle Size Distribution (PSD) within the 20L sphere was analyzed for two different powders: carbon-black and wheat starch. On the one hand, the turbulence levels and PSD variations were characterized by Particle Image Velocimetry (PIV) tests and granulometric analyses, respectively. On the other hand, a computational approach described the dispersion process with CFD-DEM simulations developed in STAR-CCM + v11.04.010. The simulation results established that the homogeneity assumption is not satisfied with the nozzles studied. Nonetheless, the particles segregation levels can be reduced using nozzles that generate a better dust distribution in the gas-solid injections. Subsequently, an additional first-approach CFD model was established to study the behavior of the combustion step for a starch/air mixture. This model considers the gas-phase reactions of the combustible gases that are produced from the devolatilization of wheat starch (CO,CH4,C2H4,C2H6,C2H2, and H2) and allowed to establish the approximate fraction of the particle mass that devolatilizes, as well as to confirm that the modeling of the pyrolysis stage is essential for the correct prediction of the maximum rate of pressure rise.  相似文献   

20.
Fire and explosion accidents are frequently caused by combustible dust, which has led to increased interest in this area of research. Although scholars have performed some research in this field, they often ignored interesting phenomena in their experiments. In this paper, we established a 2D numerical method to thoroughly investigate the particle motion and distribution before ignition. The optimal time for the corn starch dust cloud to ignite was determined in a semi-closed tube, and the characteristics of the flame propagation and temperature field were investigated after ignition inside and outside the tube. From the simulation, certain unexpected phenomena that occurred in the experiment were explained, and some suggestions were proposed for future experiments. The results from the simulation showed that 60–70 ms was the best time for the dust cloud to ignite. The local high-temperature flame clusters were caused by the agglomeration of high-temperature particles, and there were no flames near the wall of the tube due to particles gathering and attaching to the wall. Vortices formed around the nozzle, where the particle concentration was low and the flame spread slowly. During the explosion venting, particles flew out of the tube before the flame. The venting flame exhibited a “mushroom cloud” shape due to interactions with the vortex, and the flame maintained this shape as it was driven upward by the vortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号