首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Produced water is a significant waste stream generated in association with oil and gas production. It contains high concentrations of hydrocarbon constituents and different salts. In this study, a membrane sequencing batch reactor (MSBR) was used to treat synthetic and real produced water. The MSBR was evaluated in terms of biodegradation of hydrocarbons in the synthetic produced water with various organic loading rates (OLR) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m3 day)), cycle time (12, 24, and 48 h), and membrane performance. The effects of salt concentrations at different total dissolved solids (TDS) (35,000, 50,000, 100,000, 150,000, 200,000, and 250,000 mg/L) on biological treatment of the pollutants in the synthetic and real wastewater were studied. At an OLR of 1.124 kg COD/(m3 day), an HRT of 48 h and TDS of 35,000 mg/L, removal efficiencies of 97.5%, 97.2%, and 98.9% of COD, total organic carbon (TOC), and oil and grease (O&G), respectively were achieved. For the real produced water, removal rates of 86.2%, 90.8%, and 90% were obtained for the same conditions. However, with increasing salt content, the COD-removal efficiencies of the synthetic and real produced water were reduced to 90.4% and 17.7%, respectively at the highest TDS.  相似文献   

2.
Experiments have been conducted to gain insight into the credibility of sparging aqueous solutions as an electrostatic ignition hazard for sensitive hydrogen/air or fuel/oxygen mixtures (Minimum Ignition Energies of ∼0.017 mJ and ∼0.002 mJ, respectively, compared to ∼0.25 mJ for hydrocarbon/air mixtures). Tests performed in a 0.5 m3 ullage produced electric field strengths between 125 and 560 V m−1 for air flows of 5–60 l min−1, respectively, comprised of 2–4 mm diameter bubbles. Field strength can be related to the space charge and fitting to an exponential accumulation curve enabled the charge generation rate from the air flows to be estimated. This was observed to be directly proportional to the air flow and its magnitude was consistent with literature data for bubble bursts. The charge accumulation observed at laboratory scale would not be a cause for concern. On the basis of a simple model, the charge accumulation in a 27 m3 ullage was predicted for a range of air flows. It is apparent from such calculations that ignition of hydrocarbon/air mixtures would not be expected. However, it would seem possible that field strengths might be sufficient to cause a risk of incendive spark or corona discharges in moderately sized vessels with sensitive flammable mixtures.  相似文献   

3.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

4.
The biological aerated filter (BAF) system, a new alternative in drinking water treatment, was designed to remove NH4+–N and Mn2+ simultaneously. This study aimed to control the aeration time in the BAF system for simultaneous NH4+–N and Mn2+ removal to achieve the Malaysian effluent quality regulation for drinking water. The experiment was conducted under four strategies of S1, S2, S3 and S4. The results demonstrated that acceptable levels of NH4+–N and Mn2+ were achieved over a 6 h aeration period (S1), producing effluent concentrations of 0.7 mg/L (93.2% removal) and 0.08 mg/L (79.6% removal), respectively. At the initial treatment of S1 and S2, the dissolved oxygen (DO) level rapidly increased until it reached a saturated concentration (6.8 mg/L DO) after 2 h period. Automatic on–off aeration time to maintain 3 mg/L DO set point (S4) resulted with a good effluent quality of NH4+–N and Mn2+ compared with the 2 mg/L DO set point (S3) which did not meet the regulated standard limits. Through the automatic on–off aeration time, the saturated and excessive DO levels in the BAF system can be avoided consequently reduce the wastage of energy and electrical consumption for simultaneous NH4+–N and Mn2+ removal from drinking water treatment.  相似文献   

5.
The feasibility of using endpoint pH control to achieve stable partial nitritation (PN) in an SBR for landfill leachate treatment was investigated. By imposing a fixed-time anoxia followed by variable-time aeration in an SBR cycle, successful partial nitritation was maintained for 182 days at a nitrogen loading rate of 0.30–0.89 kg/m3/day. The effluent NO2-N/NH4+-N ratio and the effluent NO3-N concentration were 1.30 ± 0.22 and 16 ± 9 mg/L, respectively. High free ammonia (FA) and low dissolved oxygen (DO) concentrations were inhibition factors of nitrate formation. The termination of aeration at a suitable endpoint pH was the key to achieve an effluent NO2-N/NH4+-N ratio close to the stoichiometric value. This endpoint pH control strategy represents practical potentials in the engineered application of combined PN–ANAMMOX processes.  相似文献   

6.
Biodegradation of toluene vapour was investigated for 168 days in a polyurethane packed biofilter inoculated with a mixed microbial population. Biofilter consisted of five square cross-section modular units each of size 0.16 m × 0.16 m × 0.20 m and filled with the polyurethane foam cubes up to a height of 0.15 m. Inlet concentration of toluene was varied from 0.04 to 2.5 g m?3 and the volumetric flow rate of toluene loaded air from 0.06 to 0.90 m3 h?1.Depending upon initial loading rates, removal efficiency ranging from 68.2 to 99.9% and elimination capacity ranging from 10.85 to 90.48 g h?1 m?3 were observed during steady state operations. More than 90% removal efficiency was observed up to an inlet loading rate of 76.3 g h?1 m?3. High carbon recovery (>90%) indicated effective biodegradation in the bed. Low variation of pH (7.2–8.8) and pressure drop (45.8–76.3 Pa) was observed. The stability of the biomass was evident from the fast response of the biofilter to shutdown and restartup.  相似文献   

7.
In present investigation, an attempt has been made for the synthesis of cupric oxide nanoparticles (CuONPs) through a green route by utilizing lemon juice extract as a bioreductant. The synthesized CuONPs were characterized through UV–visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The CuONPs were utilized for Cr(VI) removal from water through adsorption method in batch mode at different initial Cr(VI) concentration, pH, temperature and CuONPs dosage. The maximum uptake capacity of CuONPs was found to be 16.63 mg of Cr(VI)/g at pH 4.0. Implementation of response surface methodology (RSM) followed by artificial neural network hybridized with genetic algorithm (ANN-GA) approach has resulted maximum Cr(VI) adsorption of 98.8% under the optimized conditions of initial metal concentration 22.5 mg/L, pH 3.81, CuONPs dose 1.28 g/L and temperature 37.1 °C. Under optimum conditions, adsorption isotherm study was conducted, which showed that the fitness of experimental data was well achieved with Langmuir isotherm model illustrating monolayer pattern of adsorption. Thermodynamic study revealed that the process was spontaneous and endothermic in nature, while adsorption kinetics was best explained by pseudo-second order kinetic model.  相似文献   

8.
Nitrates constitute one of the main toxic contaminants of groundwater. On the other hand, groundwater may be considered anoxic (oxygen concentration less than 9 μg L?1). This fact justifies the use of nano zero valent metals for nitrate removal. In such conditions, zero valent metals are quite stable against oxidation due to the very low level of dissolved oxygen concentration. It has been shown that the performance of zero valent iron coated clinoptilolite zeolite for the reduction of nitrate anion in un-buffered conditions may be enhanced by coating small amounts of Cu0 onto the freshly prepared Fe0/zeolite composite. An optimum loading of Cu0 exists for which the rate of nitrate removal is maximal. For this optimal composition, the nitrite anion production curve with time passes through a maximum. Nitrite production, however, is slightly higher for the Cu modified zeolite. It has been shown that the nitrate removal process is only slightly dependent on the initial solution pH. In the temperature range of 20–60 °C, the process is controlled by both the liquid phase mass transfer and intrinsic reaction rate resistances. FESEM analysis of the zero valent metal/zeolite composite showed that upon the metal reduction reaction, an egg-shell distribution of zero valent metal in the zeolite agglomerate particle is produced.  相似文献   

9.
A biotrickling filter packed with coal slag as packing medium was continuously used for more than 9 months under high ammonia loading rates of up to 140 g/m3/h. Nitrogen mass balance and microbial community analysis were conducted to evaluate the inhibitory effects of high ammonia concentration and metabolic by-products on the rates of nitrification. Ammonia removal efficiency reached above 99% at an empty bed retention time of as low as 8 s when inlet concentrations were below 350 ppm. The maximum and critical elimination capacities of the biotrickling filter were 118 g/m3/h and 108.1 g/m3/h, respectively. Kinetics analysis results showed that less than 2.5 s was required for the biotrickling filter with pH control to treat ammonia at concentrations of up to 500 ppm in compliance with the Taiwan EPA standard (outlet NH3 < 1 ppm). Results of mass balance and microbial community analysis indicated that complete removal was mainly contributed by the activities of autotrophic ammonia oxidizing bacteria and not by physical absorption or adsorption at low loading rates. However, at high inlet loadings, ammonium became the dominant by-product due to inhibitory effects of high ammonia concentration on the bacterial community.  相似文献   

10.
An ozonation process was performed using a recycled electrochemical ozone generator system. A titanium based electrode, coated with nanocomposite of Sn–Sb–Ni was applied as anode in a laboratory-made electrochemical reactor. A constant flow rate of 192 mg/h of generated ozone was entered to an ozonation reactor to contact with a typical target pollutant, i.e., Rhodamine B (Rh.B) molecules in aqueous solution. Four operational parameters such as: initial dye concentration, pH, temperature and the contact time were evaluated for the ozonation process. Experimental findings revealed that for a solution of 8 mg/L of the dye, the degradation efficiency could reach to 99.5% after 30 min at pH 3.7 and temperature of 45 °C as the optimum conditions. Kinetic studies showed that a second order equation can describe the ozonation adequately well under different temperatures. Also, considering to the importance of process simulation, a three-layered feed forward back propagation artificial neural network model was developed. Sensitivity analysis indicated order of the operational parameter's relative importance on the model output as: time  pH > Rh . B initial concentration > temperature.  相似文献   

11.
Granulation of nitrifying bacteria was investigated in a continuous bubble column bioreactor. Then, the combined effect of aeration and ammonium loading rates on dissolved oxygen (DO) concentration as well as nitrification process was evaluated in the system using an experimental design technique. After 120 days, stable nitrifying granules with average diameter of 1.4 mm and settling velocities of 55 m/h were obtained. The influence of increasing ammonium loading rate (ALR) was found to be more significant than decreasing aeration rate on the reduction of DO concentration inside the nitrifying bioreactor. The system could handle the ALR values of 0.48–1.92 gNH4+-N/L d with the ammonium removal efficiency from 65% to nearly 100% at the tested airflow rates of 2.5 and 4.5 L/min. At the low aeration, the complete ammonium conversion to nitrate was replaced with nitrite when the ALR increased to 1.44 gNH4+-N/L d. At the high aeration, however, almost complete nitrification was achieved except the high ALR in which the nitrite accumulation was observed up to 38%. The study demonstrated that the continuous bioreactor had a considerable performance for obtaining stable nitrifying granules to have nitrite accumulation under control with changing the ratio of aeration rate and ALR.  相似文献   

12.
Rotating biological contactors (RBCs) for wastewater treatment began in the 1970s. Removal of organic matter has been targeted within organic loading rates of up to 120 g m−2 d−1 with an optimum at around 15 g m−2 d−1 for combined BOD and ammonia removal. Full nitrification is achievable under appropriate process conditions with oxidation rates of up to 6 g m−2 d−1 reported for municipal wastewater. The RBC process has been adapted for denitrification with reported removal rates of up to 14 g m−2 d−1 with nitrogen rich wastewaters. Different media types can be used to improve organic/nitrogen loading rates through selecting for different bacterial groups. The RBC has been applied with only limited success for enhanced biological phosphorus removal and attained up to 70% total phosphorus removal. Compared to other biofilm processes, RBCs had 35% lower energy costs than trickling filters but higher demand than wetland systems. However, the land footprint for the same treatment is lower than these alternatives. The RBC process has been used for removal of priority pollutants such as pharmaceuticals and personal care products. The RBC system has been shown to eliminate 99% of faecal coliforms and the majority of other wastewater pathogens. Novel RBC reactors include systems for energy generation such as algae, methane production and microbial fuel cells for direct current generation. Issues such as scale up remain challenging for the future application of RBC technology and topics such as phosphorus removal and denitrification still require further research. High volumetric removal rate, solids retention, low footprint, hydraulic residence times are characteristics of RBCs. The RBC is therefore an ideal candidate for hybrid processes for upgrading works maximising efficiency of existing infrastructure and minimising energy consumption for nutrient removal. This review will provide a link between disciplines and discuss recent developments in RBC research and comparison of recent process designs are provided (Section 2). The microbial features of the RBC biofilm are highlighted (Section 3) and topics such as biological nitrogen removal and priority pollutant remediation are discussed (Sections 4 Biological nutrient removal in RBCs, 5 Priority pollutant remediation in RBCs). Developments in kinetics and modelling are highlighted (Section 6) and future research themes are mentioned.  相似文献   

13.
Aluminium-based water treatment sludge was used as a coagulant for removing/recovering phosphate from the effluent of upflow anaerobic sludge blanket (UASB) reactor treating municipal wastewater. The effect of three variables, namely sludge dose, initial pH and fresh coagulant (poly-aluminium chloride, PACl) dose was studied using response surface methodology. About 87% phosphate removal could be obtained at the optimum conditions of sludge dose 13.8 g/L, initial pH 6, and fresh PACl dose 5.8 mg Al/L. In order to achieve a similar phosphate removal, a dose in the range of 30–40 mg Al/L of fresh PACl was required. The results suggest that water treatment sludge can be reused as a coagulant for post-treatment of UASB reactor effluent treating municipal wastewater and can be considered as a promising alternative for removing phosphate which can substantially reduce the consumption of fresh PACl. The sludge generated during this process could potentially be used in land application which results in recycling of phosphate.  相似文献   

14.
The present study reported a method for removal of As(III) from water solution by a novel hybrid material (Ce-HAHCl). The hybrid material was synthesized by sol–gel method and was characterized by XRD, FTIR, SEM–EDS and TGA–DTA. Batch adsorption experiments were conducted as a function of different variables like adsorbent dose, pH, contact time, agitation speed, initial concentration and temperature. The experimental studies revealed that maximum removal percentage is 98.85 at optimum condition: pH = 5.0, agitation speed = 180 rpm, temperature = 60 °C and contact time = 80 min using 9 g L−1 of adsorbent dose for initial As(III) concentration of 10 mg L−1. Using adsorbent dose of 10 g L−1, the maximum removal percentage remains same with initial As(III) concentration of 25 mg L−1 (or 50 mg L−1). The maximum adsorption capacity of the material is found to be 182.6 mg g−1. Subsequently, the experimental results are used for developing a valid model based on back propagation (BP) learning algorithm with artificial neural networking (BP-ANN) for prediction of removal efficiency. The adequacy of the model (BP-ANN) is checked by value of the absolute relative percentage error (0.293) and correlation coefficient (R2 = 0.975). Comparison of experimental and predictive model results show that the model can predict the adsorption efficiency with acceptable accuracy.  相似文献   

15.
An integrated process of metal chelate absorption coupled with two stage bio-reduction using immobilized cultures has been proposed to continuously removal of NOx, and the effects of SO2, NO and O2 concentration, gas/liquid flow rate on NOx removal efficiency were investigated. Although nitrogen-containing components, such as Fe(II)EDTA-NO, NO2? and NO3? in the scrubbing solution, inhibited the bio-reduction of Fe(III)EDTA obviously, it was feasible to abate the inhibition effect by using the two stage bio-reduction system, and thus to improve NOx removal efficiency. The removal efficiency decreased slowly with the increase of SO2, O2, NO concentration and gas flow rate, and increased with the increase of liquid flow rate. Continuously operating for 18 days, a high removal efficiency around 95% was reached by using the two-stage bio-reduction system with immobilized microorganisms, while the value decreased to 85% after 5 days of operation by using the suspended microorganisms, at a constant gas flow rate of 60 L/h containing 424–450 mg/m3 NO, 2428–2532 mg/m3 SO2 and 3% O2.  相似文献   

16.
Volatile organic compounds (VOCs) are easily evaporated and discharged from everywhere into the atmosphere, especially in various operations of gasoline. The emission of VOCs is always a significant environmental problem, and the control of VOCs pollution has been a hot topic in the field of air purification. In this paper, the condensation separation method for gasoline vapor recovery was investigated and four gasoline vapors of S1–S4 were selected for the sensitivity analysis and optimization of the condensation process, using the Model Analysis Tools from Aspen Plus. Generally, to control VOCs pollution efficiently, both the vapor recovery efficiency and the outlet vapor concentration of the condensation recovery system should be simultaneously considered. Then an optimized three-stage condensation process was proposed, whose condensation temperatures were optimized and designed at 1 °C, −40 °C and −110 °C, respectively. Further, based on the comprehensive consideration of both meeting the more strict VOCs emission standard and ensuring the condensation recovery system work stably and economically, it was recommended that the maximum total vapor recovery efficiencies for S1–S4 should be 99.73%, 99.79%, 99.82% and 99.19%, and the minimum outlet vapor concentrations be 2.87 g/m3, 2.75 g/m3, 3.04 g/m3 and 16.98 g/m3, respectively. Accordingly, the condensation temperature of the copious cooling stage should be set at −130 °C. Moreover, the total cooling duties for the single-stage and three-stage condensation processes were investigated and compared when the condensation temperature of the recovery system ranged from 20 °C to −110 °C. The total cooling duties of the three-stage condensation process for S1–S4 would be saved by 12.23%, 15.68%, 13.96% and 15.65%, respectively. Finally, a three-stage condensation system was developed for the industrial gasoline vapor recovery, which has performed well since its installation.  相似文献   

17.
The present study investigates the adsorption potential of Chrysanthemum indicum flower in its raw (CIF-R) and biochar (CIF-BC) form for the removal of cobalt ions from aqueous solution. The adsorbents were characterized for their surface area using BET analysis, surface morphology and elemental composition with SEM-EDAX and for the presence of functional groups by FTIR analysis. Batch adsorption experiments were carried out to evaluate the effect of process parameters, viz. pH, adsorbent dosage, initial metal ion concentration, contact time, stirring speed, presence of interfering ions and temperature on the adsorption of Co(II) ion using both the adsorbents. The optimum conditions for maximum removal of Co(II) ion was ascertained to be pH 5 for both adsorbents, adsorbent dose of 4 g/L and 3 g/L, equilibrium time of 60 min and 45 min, respectively, for CIF-R and CIF-BC. The maximum adsorption capacity of CIF-R and CIF-BC was found to be 14.84 mg/g and 45.44 mg/g, respectively, for the removal of Co(II) ion. The mechanism of adsorption was studied using different models of adsorption kinetics, isotherms and thermodynamics. It was inferred that Co(II) adsorption on both CIF-R and CIF-BC followed pseudo-second order kinetics and Langmuir isotherm model with the process being spontaneous and endothermic in nature.  相似文献   

18.
In this research, treatability of high-load compost leachate in a hybrid expanded granular sludge bed (EGSB) and fixed-bed (FB) bioreactor followed by electrocoagulation–flotation (ECF) system was examined. The operational factors in EGSB–FB were influent chemical oxygen demand (COD), hydraulic retention time (HRT) and COD/nitrogen ratio (COD/N). And, their interactive effects on the efficiency of COD removal and biogas production rate (BPR) as responses were analyzed and correlated by response surface methodology (RSM). The optimum conditions of the hybrid EGSB–FB reactor were acquired at COD = 7800 mg/L, HRT = 35 h, COD/N = 70, in which COD removal efficiency was 83% and BPR 94 mL/h. The amount of confidence interval was 95%. COD (relevant coefficient = 9.8) and HRT (relevant coefficient = −24) were resulted respectively as the most effective parameters on COD removal and BPR. Yet, COD/N parameter imposed negative effect on COD removal and BPR in values less than about 100. The outcomes indicated that operated ECF as post-treatment in constant conditions (electrolysis time = 75 min, electrodes distance = 3 cm, voltage = 20 V) successfully satisfied discharge criteria in the most part of experimental domains.  相似文献   

19.
Oxidative disintegration of municipal waste activated sludge (WAS) using conventional Fenton (Fe2+ + H2O2, CFP) and Fenton type (Fe0 + H2O2, FTP) processes was investigated and compared in terms of the efficiency of sludge disintegration and enhancement of anaerobic biodegradability. The influences of different operational variables namely sludge pH, initial concentration of Fe2+ or Fe0, and H2O2 were studied in detail. The optimum conditions have been found as catalyst iron dosage = 4 g/kg TS, H2O2 dosage = 40 g/kg TS and pH = 3 within 1 h oxidation period for both CFP and FTP. Kinetics studies were performed under optimal conditions. It was determined that the sludge disintegration was happened in two stages by both processes: rapid and subsequent slow disintegration stages and rapid sludge disintegration stage can be described by a zero-order kinetic model. The effects of oxidative sludge disintegration under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential (BMP) assay in batch anaerobic reactors. Total methane production in the CFP and FTP pre-treated reactors increased by 26.9% and 38.0%, relative to the untreated reactor (digested the raw WAS). Furthermore, the total chemical oxygen demand reductions in the pre-treated reactors were improved as well.  相似文献   

20.
Research Mining Institute, Inc., Ostrava-Radvanice, in cooperation with Dept. of Theory And Technology of Explosives of University of Pardubice and Klokner Institute of CTU in Prague, has performed three series of experiments examining methane–air mixture explosions and their impact on 14 and 29 cm thick wall. The project was named ‘Modeling Pressure Fields Effects on Engineering Structures During Accidental Explosions of Gases in Buildings’ and was sponsored by Grant Agency of Czech Republic (project No. 103/01/0039). The project is aimed at deeper understanding of pressure field effect upon the structures. Methane-air mixture explosion was used to generate the blast wave. The geometrical configuration of the environment resembled a room of an average size, such as larger kitchen. Preliminary simulations were made by AutoReaGas code (Century Dynamics and TNO). The design phase was followed by tests in an experimental mine in Stramberk. Two masonry dams were build in the mine, with cross-section areas of 10.2 m2 and longitudinal distance of 5.7 m, creating an explosion chamber with a volume of 58 m3. Two vent openings with an adjustable free cross-section were used to control the maximum overpressure inside the chamber. The concentration of methane-air mixture was approximately 9.5% (vol.) and the volumes of the clouds were 5.25, 10.2 and 15.3 m3 respectively. The generated blast wave overpressures inside the chamber ranged between 1 and 150 kPa. According to experimental results a calibration of the code was performed. After the calibration it is possible to make relatively accurate simulations in similar geometry and to calculate the pressure loading of the structure at any spot in the simulated space. This paper describes the experiments performed and compares experimental and computational results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号