首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
肖雨亭  吴鹏  王玲  张亚平 《化工环保》2019,39(4):431-436
以Ce改性Fe-Mn/TiO_2低温选择性催化还原(SCR)脱硝催化剂为研究对象,通过活性测试和一系列表征技术对其低温抗硫性能及中毒机理进行探究。实验结果表明:当烟气中通入SO_2体积分数在0.02%以下时,Fe_(0.1)Ce_(0.07)Mn_(0.4)/TiO_2催化剂呈现出良好的抗硫性,且停止通入SO_2时催化剂的脱硝活性可恢复至初始水平;当通入SO_2的体积分数增加至0.04%时,催化剂会发生不可逆失活。表征结果显示:(NH_4)_2SO_4在催化剂表面的沉积和活性组分锰氧化物的硫酸化(生成MnSO_4)是催化剂硫中毒的主要原因;中毒后的催化剂比表面积显著降低,氧化还原能力减弱;催化剂Lewis酸的酸性大幅度减弱是催化剂活性降低的重要原因。  相似文献   

2.
采用浆液浸涂法在堇青石蜂窝陶瓷载体上涂覆Al2O_3-TiO_2-ZSM-5分子筛复合载体,并通过浸渍法负载活性组分Mn-Fe-Ce,制备了M/ATZ-CC选择性催化还原催化剂。考察了催化剂的低温脱硝活性和抗水性能,表征了催化剂的物性参数和氨-程序升温脱附性能。实验结果表明,M/ATZ-CC催化剂具有优异的脱硝活性和抗水性能,在反应温度为160℃、水蒸气加入量为10%(φ)、NO体积分数为0.1%、n(NH_3)∶n(NO)=1、O_2体积分数为3.0%、体积空速为3 000~10 000 h~(-1)的条件下,NO去除率在80%以上。表征结果显示,该催化剂的比表面积、孔径、弱酸酸量、中强酸酸量和总酸量得到了显著提高。  相似文献   

3.
低温选择性催化还原(SCR)技术具有很高的脱硝效率。概述了低温SCR金属氧化物催化剂的制备方法和性能,分析了催化剂的失活原因和再生方法,探讨了催化反应的机理,并介绍了低温SCR技术在工业烟气脱硝中的应用案例。SCR催化剂未来的发展不仅要以低温下的高活性和高选择性为主要目的,还要考虑到催化剂的抗失活性能(如抗硫性和抗水稳定性)和操作温度范围,使其可广泛应用于不同的工况中,以满足我国日益提高的环保要求。  相似文献   

4.
开发低温、高活性、高抗硫抗水性能的选择性催化还原(SCR)脱硝催化剂已成为国内外的研究热点。综述了基于TiO2载体的锰铈系低温脱硝催化剂的脱硝性能,探讨了助剂掺杂改性、制备方法、反应条件等对催化剂脱硝性能的影响,总结了现有低温脱硝催化剂的技术难点,指出SCR催化剂的研究需要着重考虑以下几方面:深入研究催化剂的反应机理和中毒机理;研究催化剂的循环再生;探究拓宽催化剂温度窗口,使其适应不同的温度条件。  相似文献   

5.
采用共沉淀法合成了不同Ce与Ti摩尔比的CePO4-TiO2复合材料,利用XRD、TEM、NH3-TPD和H2-TPR技术对其物理化学性质进行了表征,并对其NH3-SCR活性进行了评价。实验结果表明:随着CePO4含量的增加,催化剂的活性提高;当Ce与Ti的摩尔比为8:2时催化剂的活性最高,230 ℃的NO转化率达到100%,且具有更广的温度窗口,优于纯CePO4。表征结果显示,CePO4与TiO2形成固溶体后,颗粒尺寸较为均匀,强酸位的数量增多,氧化还原性能提升,从而提高了催化剂的SCR反应活性,同时改善了其抗水抗硫性能。  相似文献   

6.
采用草酸沉淀法合成了铈锰 氧化物(CeMn氧化物)催化剂,在固定床反应器中考察了不同Ce-Mn摩尔比、空速对CeMn 氧化物催化剂催化降解甲苯效果的影响,通过XRD、SEM、XPS等技术表征了催化剂的理化性质。实验结果表明:当n(Ce)∶n(Mn)=1∶3时得到的Ce1Mn3催化剂降解甲苯的活性最佳,T50=198 ℃,T90=249 ℃,且Ce1Mn3催化剂具有较好的活性稳定性;随着空速的增加,Ce1Mn3催化降解甲苯的性能变差。表征结果表明:CeMn氧化物形成的Ce-Mn固溶体使CeMn氧化物表面氧空位浓度增加,加快了氧物种在催化剂内部及表面的流动传输;Ce氧化物与Mn氧化物之间的协同作用使催化剂的还原峰向低温方向偏移,CeMn氧化物展现出更优异的低温活性。  相似文献   

7.
采用一步浸渍法和分步浸渍法分别制备了V_2O_5-WO_3-CeO_2/TiO_2催化剂,考查了其脱硝性能、抗SO_2中毒性能和脱硝活性稳定性,并通过SEM、EDS、XRD、激光拉曼等技术对催化剂进行了表征。实验结果表明:分步浸渍法制备的催化剂的脱硝活性优于一步浸渍法,且抗SO_2中毒能力更强;在m(V_2O_5)∶m(WO_3)∶m(CeO_2)∶m(TiO_2)=1∶5∶10∶100时催化剂脱硝活性最佳,且具有良好的脱硝活性稳定性。表征结果显示,分步浸渍法与一步浸渍法制备的催化剂晶型结构相差不大,而分步浸渍法制备的催化剂颗粒粒径更小、更均匀,催化剂中Ce、O、V和W元素的含量更高。  相似文献   

8.
综述了活性半焦用于选择性催化还原脱硝技术中的研究现状,介绍了半焦自身的催化机制和半焦活性的影响因素,阐述了半焦的活化方法以及作为载体负载金属催化剂的种类和研究进展,讨论了活性半焦基催化剂在抗水中毒和抗硫中毒方面的研究情况,展望了活性半焦作为新型载体材料在低温选择性催化还原脱硝中的应用前景。  相似文献   

9.
对近年来N2O分解反应催化剂的研究进行了综述,包括离子交换分子筛、过渡金属氧化物、负载型贵金属等催化剂.对于离子交换分子筛催化剂而言,分子筛骨架结构、交换离子类型、制备方法均对催化剂的活性有一定影响.在过渡金属氧化物催化剂中,Co-A1、Co-Mn-A1等类水滑石衍生复合氧化物的比表面积和催化活性均较高,在其表面添加适量的碱金属或碱土金属助剂可进一步提高催化活性.在贵金属催化剂中,还原型载体负载的催化剂活性较高.Co基复合氧化物负载Au催化剂有望成为实用型的N2O低温分解催化剂.  相似文献   

10.
以自制复配无机锰盐和分析纯六水合硝酸铈为原料,制备了非负载无定形态Mn-Ce催化剂,运用XRD,XPS,NH_3-TPD技术对其进行了表征,并对其脱硝活性进行了评价。结果表明:所制备催化剂的体相结构为高度无定形态;催化剂中的Mn和Ce元素主要以MnO_2和CeO_2的形式存在;催化剂表面有大量的化学吸附氧和弱酸位点,并表现出较好的NH_3吸附性能;该催化剂不仅具有较高的脱硝活性,而且还有较宽的活性温度范围,80~300℃的脱硝率均达90%以上。  相似文献   

11.
将活性炭(AC)应用于烟气脱硝中,其自身损耗和脱硝效率是关注焦点。采用不同氧化剂(KMnO4、HNO3、(NH4)2S2O8和H2O2)对AC进行氧化改性,对所得催化剂进行了TG、FTIR、H2-TPR和XPS表征,并对其脱NO活性进行了评价。对AC进行浸渍回流处理,可使AC表面含氧官能团增加,尤其是羧基和羰基等酸性含氧官能团。TG分析结果表明:在没有O2存在时,催化剂表面的O会与NO发生反应,导致催化剂自身损耗;在O2存在时,NO主要与O2中的O反应,因而在一定温度范围内不会发生催化剂自身损耗;同时AC表面的含氧官能团能加速NO的化学吸附活化,从而提高催化剂的脱NO活性。KMnO4改性的AC在180 ℃具有高催化活性,这归因于催化剂表面丰富的含氧官能团以及高价态Mn的存在。  相似文献   

12.
分别以NaY、NH4Y和HY沸石为载体,以乙酰丙酮铁为铁源,采用固态反应法制备了铁负载量均为10%(w)的FeNaY-10、FeNH4Y-10和FeHY-10催化剂。考察了各催化剂对活性艳蓝(KN-R)的降解效果,其中FeHY-10的催化降解效果最佳。采用XRD和FTIR技术对FeHY-10催化剂进行表征。表征结果显示,FeHY催化剂晶体结构仍然保持了Y分子筛特有的孔道结构,铁物种在Y 分子筛表面高度分散。催化降解实验表明,催化降解KN-R的最佳工艺条件为KN-R溶液(质量浓度为300 mg/L)加入量为50 mL、溶液pH为2、催化剂FeHY-25(铁负载量为25%(w))加入量为0.281 3 g、H2O2质量浓度为6.356 g/L、降解温度为35 ℃、降解时间为140 min,在此工艺条件下FeHY催化剂对KN-R的降解率为97.4%。  相似文献   

13.
采用溶胶-凝胶法制备了Mn掺杂钙钛矿型催化剂LaFexMn1-xO3,并以其为催化剂催化湿式双氧水氧化处理煤气化废水纳滤浓缩液。采用XRD,SEM,FTIR技术对催化剂进行了表征。表征结果显示:制备的催化剂均具有标准的钙钛矿型结构,其中,LaFe0.9Mn0.1O3的结构稳定,比表面积大。实验结果表明:制备的催化剂中LaFe0.9Mn0.1O3的催化活性最高,且稳定性好,连续使用5次后催化活性未见明显减弱;在H2O2投加量3.0 g/L、n(H2O2)∶n(LaFe0.9Mn0.1O3)=12∶1、反应温度160 ℃、反应压力1 MPa、浓缩液pH 3、反应时间60 min的最优条件下,COD、UV254和TOC的去除率分别达到80.9%、95.2%和68.0%,BOD5/COD由0.02提升至0.40,可生化性大幅提高。  相似文献   

14.
低温等离子体协同催化降解含硫恶臭污染物   总被引:1,自引:0,他引:1       下载免费PDF全文
采用共沉淀—喷涂法制备了(Cu5Mn7Zr1O22)0.08/(γ-Al2O3)0.1/堇青石蜂窝陶瓷催化剂。表征结果显示:催化剂孔隙率较高,表面均匀分散着粒径介于20~100 nm的晶体颗粒。以硫化氢和乙硫醇为典型含硫恶臭污染物进行了低温等离子体协同催化降解实验,结果表明:污染物的降解率随着输入功率的增加而提高;与单纯低温等离子体相比,低温等离子体协同催化能获得更好的降解效果。降解机理可能为:在高能电子和活性粒子作用下,H2S或C2H5SH分子中键能较弱的H—S、C—S和C—C键断裂形成·SH、·C2H5、·CH2SH、·CH3等小碎片基团,这些小碎片基团进一步发生聚合、氧化或自由基链式反应,最终降解为CO2、SO2、SO3、H2O等无毒小分子。  相似文献   

15.
湿法同时脱硫脱硝工艺中脱硝吸收剂的研究现状   总被引:3,自引:1,他引:2  
综述了目前国内外开发的湿法烟气脱硫、脱硝一体化技术中对脱硝吸收剂的研究现状,主要介绍了亚氯酸钠、过氧化氢、高锰酸钾、亚铁络合物、钴络合物以及尿素、亚硫酸铵。分析了各种吸收剂的优缺点,并对湿法脱硝吸收剂的应用前景进行了展望。  相似文献   

16.
针对传统Fenton体系Fe(Ⅲ)累积和pH适用范围过窄等缺点,采用羟胺(HA)强化的HA-Fenton体系,以对氯苯酚(4-CP)为目标污染物进行降解实验,考察了Fe(Ⅱ)投加量、H2O2投加量、HA投加量和溶液pH等工艺条件对4-CP去除率的影响。实验结果表明:HA-Fenton体系适用于酸性和弱酸性条件,最佳pH范围为3.0~4.0;在溶液pH为3.0、Fe(Ⅱ)投加量为5.0 μmol/L、H2O2投加量为0.4 mmol/L、HA投加量为0.20 mmol/L的最适条件下,反应10 min, 4-CP去除率达64.25 %。  相似文献   

17.
左银虎 《化工环保》2017,37(3):371-380
利用二苯碳酰二肼显色,Triton X-100-正辛醇浊点萃取,建立了一种分光光度法测定水中Cr(Ⅵ)的新方法,并探讨了不同测定条件对测定效果的影响。优化后的测定条件为(总体积50 mL)1 mol/L稀硫酸加入量1.0mL、2 g/L二苯碳酰二肼溶液加入量1.5 mL、10 g/L Triton X-100溶液加入量1.5 mL、3 g/L苯甲酸溶液加入量4.0mL、正辛醇加入量5.0 mL。Cr(Ⅵ)质量浓度在0~20μg/L范围内符合朗伯-比尔定律,线性回归方程的相关系数为0.995 5。该方法应用于水样中痕量Cr(Ⅵ)的测定,相对标准偏差小于2.5%,加标回收率为95.7%。  相似文献   

18.
采用混凝—热固化联合空气吹脱法处理高浓度水性油墨废水。混凝—热固化法处理高浓度水性油墨废水的优化工艺条件为混凝剂NS-1投加量7.36 g/L,热固化温度75 ℃,热固化时间30 min,在此条件下COD去除率达91.00%,色度去除率达99.00%。空气吹脱法处理混凝—热固化出水,初始ρ(氨氮)对氨氮去除率影响较小;气液比增大、废水pH升高、吹脱次数增加、废水温度升高均能提高氨氮去除率。在废水初始ρ(氨氮)为1 406.25 mg/L、气液比为2 667、废水pH为11.50、废水温度为25 ℃、连续吹脱4次的条件下,氨氮去除率达95.34%。  相似文献   

19.
张慧茹  孙中豪  赵毅 《化工环保》2012,40(3):246-252
金属有机骨架材料(MOFs)因其独特的结构作为催化剂应用于SCR系统表现出较好的低温脱硝效果和较强的抗SO2、抗H2O性能。综述了几种较典型的MOFs催化剂及其改性产物的低温催化性能,以及MOFs材料应用于SCR技术的研究进展,指出:对含有两种或两种以上金属的复合MOFs材料的深入研究,是开发稳定性更高、抗SO2抗H2O能力更强的MOFs催化剂的重要思路;此外,对有机组成部分进行改性,提高有机配体的热稳定性也是一个重要的研究思路。  相似文献   

20.
以γ-Al2O3作为载体,先后负载CeO2,MnC2O4,Fe(NO33,CrO3,Ni(NO32,NH4VO3等多种金属组分制备γ-Al2O3负载多金属复合催化剂,并用于模拟烟气的选择性催化还原脱硝。通过SEM和XRD技术对催化剂进行了表征。表征结果显示:Fe,Mn,Cr的添加能增加催化剂的低温催化活性、提高催化剂的N2选择性;γ-Al2O3对活性金属氧化物的负载效果良好。实验结果表明:各金属化合物的最佳加入量为 w(MnC2O4·2H2O)=20%,w(Fe(NO33·9H2O)=15%,w(CrO3)=10%,w(Ni(NO32·6H2O)=5%,w(NH4VO3)=10%,w(CeO2)=5%,w(γ-Al2O3)=35%;以在最佳正交实验条件下制得的γ-Al2O3负载多金属复合物为催化剂,在脱硝反应温度为205 ℃的条件下,NO转化率为96.7%;γ-Al2O3负载多金属复合催化剂经5次重复使用,NO转化率仍可稳定在94%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号