首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Eleven microorganisms were isolated from several temperate marine locations in the northeast Altantic coast of the United States and one tropical location in the Pacific Ocean (Hawaii) for the purpose of developing a rapid and accurate method of screening biodegradable materials for their susceptibility to mineralization. The materials evaluated in this study included chemically modified starch, amylose and pullulan, poly(3-hydroxybutyrate-co-valerate), (PHB/V), cellulose acetate, and a modified lignin/styrene. Some of the soluble, unmodified, biologically produced substrates such as starch, pullulan, and amylose mineralized rapidly. In general, the synthetic, insoluble polymers and the chemically modified polymers, such as acetylated and chlorinated amylose and pullulan, mineralized more slowly, although the ultimate mineralization of some of the substituted polysaccharides equaled or exceeded that of the unmodified substrate. The insoluble bacterial polyester, PHB/V, degraded rapidly after a short induction period. Initial respiration rate data, in general, could not be used as a predictor of ultimate mineralization. It was found that the cumulative level of carbon dioxide evolved signifies the minimum extent of biodegradation of the substrate, and the oxygen consumed is a good indicator of the maximum extent of substrate degradation.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   

2.
An in‐well sediment incubator (ISI) was developed to investigate the stability and dynamics of sediment‐associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Herein we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During a seven‐month period in which oxidized Rifle Aquifer background sediment (RABS) were deployed in previously biostimulated wells under iron‐reducing conditions, cell densities of known iron‐reducing bacteria, including Geobacteraceae, increased significantly, showing the microbial community response to local subsurface conditions. Phospholipid fatty acid (PLFA) profiles of RABS following in situ deployment were strikingly similar to those of adjacent sediment cores, suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployment with laboratory‐reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISI to monitor microbial community stability and response to subsurface conditions. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Analysis of the physiological status of subsurface microbial communities generally relies on the study of unattached microorganisms in the groundwater. These approaches have been employed in studies on bioremediation of uranium‐contaminated groundwater at a study site in Rifle, Colorado, in which Geobacter species typically account for over 90 percent of the microbial community in the groundwater during active uranium reduction. However, to develop efficient in situ bioremediation strategies it is necessary to know the status of sediment‐associated microorganisms as well. In order to evaluate the distribution of the natural community of Geobacter during bioremediation of uranium, subsurface sediments were packed into either passive flux meters (PFMs) or sediment columns deployed in groundwater monitoring wells prior to acetate injection during in situ biostimulation field trials. The trials were performed at the Department of Energy's (DOE's) Rifle Integrated Field Research Challenge site. Sediment samples were removed either during the peak of Fe(III) reduction or the peak of sulfate reduction over the course of two separate field experiments and preserved for microscopy. Direct cell counts using fluorescence in situ hybridization (FISH) probes targeting Geobacter species indicated that the majority of Geobacter cells were unattached during Fe(III) reduction, which typically tracks with elevated rates of uranium reduction. Similar measurements conducted during the sulfate‐reducing phase revealed the majority of Geobacter to be attached following exhaustion of more readily bioavailable forms of iron minerals. Laboratory sediment column studies confirmed observations made with sediment samples collected during field trials and indicated that during Fe(III) reduction, Geobacter species are primarily unattached (90 percent), whereas the majority of sulfate‐reducing bacteria and Geobacter species are attached to sediment surfaces when sulfate reduction is the predominant form of metabolism (75 percent and 77 percent, respectively). In addition, artificial sediment experiments showed that pure cultures of Geobacter uraniireducens, isolated from the Rifle site, were primarily unattached once Fe(III) became scarce. These results demonstrate that, although Geobacter species must directly contact Fe(III) oxides in order to reduce them, cells do not firmly attach to the sediments, which is likely an adaptive response to sparsely and heterogeneously dispersed Fe(III) minerals in the subsurface. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
This study evaluated chemically active amendments used to construct active caps for remediating contaminated sediments. Three experiments assessed the effects of apatite, organoclay, zeolite, and biopolymers (chitosan and xanthan) on metal mobility, retention, and speciation. The first showed that the amendments individually and in mixtures (2 percent dry weight) reduced the concentrations of Cr, Co, Ni, and Pb in water extracts from reduced sediment. The second experiment, which used sequential extraction procedures to evaluate the effects of the amendments on metal speciation, showed that the amendments reduced the potentially mobile fractions of Pb, Zn, Ni, Cr, and Cd that are likely to be bioavailable. Last, column studies showed that active caps composed of the amendments prevented the diffusive transport of metals from contaminated sediment over six months. In addition, there was a “zone of influence” beneath the caps in which water extractable concentrations of metals declined substantially compared with untreated sediment. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Geochemical, mineralogical and sedimentological analyses were carried out to contrast two different sites (respectively characterized by permanently oxic and anoxic conditions) in a small, meromictic, seawater lake. In fact, due to relatively high organic matter content, and reduced water exchange, the Rogoznica Lake has almost permanent anoxic conditions below the depth of 12 m, where sediment can be considered an anoxic–sulphidic sedimentary environment. Different water column and sediments redox conditions affect the distribution and speciation of major redox-sensitive metals (Fe, Mn, Mo), reduced sulphur species (RSS) and dissolved organic C (DOC). Trace metals, especially those that accumulate in anoxic–sulphidic environments (Fe, Mo) showed a marked enrichment in the solid phase, whereas the low solubility of sulphides leads to low porewater concentrations. The relatively high sedimentary enrichment of Mo (up to 81 mg/kg) also confirms highly anoxic conditions within the Rogoznica Lake sediments. Results clearly show that chemical species within the sediments will tend towards equilibrium between porewater and solid phase according the prevailing environment conditions such as redox, pH, salinity, DOC.  相似文献   

6.
A number of hydrophobic organochlorines, such as hexachlorobenzene and polychlorinated dibenzo‐p‐dioxins/dibenzofurans (PCDD/Fs), have been reported to be persistent and bioaccumulative; however, their availability to biota appear to be limited due to strong sorption to soil/sediment and sequestration with age. Studies to date have shown that the bioavailability of hydrophobic organic chemicals (HOCs) in sediments is highly variable, depending not only on a chemical's lipophicity (Kow), but also molecular steric conformation and sediment characteristics. A subdomain of sediment organic carbon, so‐called black carbon (BC), which has much higher affinity to planar HOCs than amorphous organic carbon, has been found to be the predominant repository of many HOCs. The sediment/soil‐bound HOCs are composed of a rapid and reversible desorbing labile fraction and a slow‐desorbing, or resistant‐to‐desorbing, nonlabile fraction. The latter can account for up to 98 percent of the total. A number of chemical extraction methods have been under development to measure the actual bioavailable concentrations in soil/sediment and have shown some correlation to the results of bioaccumulation and/or biodegradation tests. To date, most of the published studies on this subject have focused on polynuclear aromatic hydrocarbons (PAHs). This review summarizes the governing processes and the testing methodologies relevant to the environmental bioavailability of hydrophobic organochlorines in soils and sediments. © 2004 Wiley Periodicals, Inc.  相似文献   

7.
While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zero‐valent iron (ZVI)–based technologies, such as nanoscale iron and bimetallic ZVI, as well as naturally occurring reduced minerals incorporating dual‐valent iron (DVI), such as magnetite, green rust, and iron sulfides that are capable of dechlorinating solvents. A more recent area of development in ISCR has been in combining biological and abiotic processes. There are several ways in which biological and abiotic processes can be combined. First, the interaction between the two may be “causative.” For example, the Air Force Center for Engineering and the Environment's biogeochemical reductive dechlorination (BiRD) technology combines a mulch barrier with hematite and gypsum to create an iron‐sulfide‐based reducing zone. Biodegradation under sulfate‐reducing conditions produces sulfide that combines with the hematite to form iron sulfides. As such, the BiRD technology is “causative”; the biological processes create reducing minerals. The biological generation of other reducing minerals such as magnetite, siderite, and green rust is feasible and is, with magnetite, observed in nature at some petroleum sites. A second type of interaction between abiotic and biotic processes is “synergistic.” For example, biological processes can enhance the activity of reduced metals/minerals. This is the basis of the EHC® ISCR technologies, which combine ZVI with a (slowly) degradable carbon substrate. This combination rapidly creates buffered, strongly reducing conditions, which result in more complete solvent degradation (i.e., direct mineralization). The extent and level of reducing activity commonly observed are much greater when both the carbon substrate and the ZVI are present. When the carbon substrate is expended, the reducing activity due to ZVI alone is much less. The understanding of biogeochemical processes and their impact on abiotic processes is still developing. As that understanding develops, new and improved methods will be created to enhance volatile organic compound destruction. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Adding activated carbon to sediments has been shown to be an effective means of reducing the bioavailability of certain contaminants. The current state of the practice is to mechanically mix activated carbon to a target concentration of 3 percent at depths of approximately 30 cm using a rotovator or similar construction equipment. Waterjets have been used to cut hard material using a mixture of water and an abrasive. If activated carbon is substituted for the abrasive, waterjets have the potential to use surface injection as a replacement for mechanical mixing during sediment remediation. A perceived benefit of waterjet‐based sediment remediation is that there may be a reduced potential for benthic organism mortality related to amendment delivery. A set of waterjet parameters were identified that have the potential to achieve amendment placement goals, and a series of waterjet tests were conducted to evaluate the potential impact on the benthic community. The tests included mortality testing using a swimming macroinvertebrate and a burrowing invertebrate, benthic artifacts such as shells, and craft foam as a surrogate for living organisms. The results indicated that the immediate survivability was typically greater than 50 percent, and that empirical relationships between two variables (waterjet nozzle diameter and the water column height between the nozzle and the target) and the depth of cut in the foam could be established. Data are not available in the literature for direct comparison of organism survivability immediately after mechanical mixing, but the results of this study provide motivation for the further evaluation of waterjets on the basis of the low observed mortality rates. Future waterjet work may address field‐scale characterization of mixing effectiveness, resuspension potential, technical feasibility, and cost. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
1,4‐Dioxane, a common co‐contaminant with chlorinated solvents, is present in groundwater at Site 24 at Vandenberg Air Force Base in California. Historical use of chlorinated solvents resulted in concentrations of 1,4‐dioxane in groundwater up to approximately 2,000 μg/L. Starting in 2013, an in situ propane biosparge system operation demonstrated reductions in 1,4‐dioxane concentrations in groundwater. The work detailed herein extends the efforts of the first field demonstration to a second phase and confirms the biodegradation mechanism via use of stable isotope probing (SIP). After two months of operation, 1,4‐dioxane concentrations decreased approximately 45 to 83 percent at monitoring locations in the test area. The results of the SIP confirmed 13C‐enriched 1,4‐dioxane was transformed into dissolved inorganic carbon (suggesting mineralization to carbon dioxide) and incorporated into microbial biomass (likely attributed to metabolic uptake of biotransformation intermediates or of carbon dioxide).  ©2016 Wiley Periodicals, Inc.  相似文献   

10.
Sediment dredge disposal options were reviewed to improve cost‐effectiveness and environmental safety for dredging of coastal sediments at the Department of Fisheries and Oceans Small Craft Harbours (DFO‐SCH) program in Canada. Historically, contaminated dredge sediments exceeding federal guidelines were disposed of in nearby landfills. Recent federal regulatory changes in sediment quality guidelines adopted by provincial regulators in Canada has resulted in updates to guidelines for disposal of contaminated solids in landfills. Updates now require specific and general disposal options for contaminated dredge material destined for land‐based disposal, resulting in more expensive disposal in containment cells (if contaminated sediments exceed federal guidelines). However, as part of this study, a leachate testing method was applied to contaminated sediments to simulate migration of potential contaminants in groundwater. Using this approach, leachate quality was compared to federal freshwater criteria and drinking water quality guidelines for compliance with new regulations. Leachate testing performed on the highest sediment contaminant concentrations triggered less than 2 percent potable water exceedances, meaning that most dredge spoils could be disposed of in privately owned or provincially operated landfill sites, providing less expensive disposal options compared to containment cell disposal. Current dredge disposal practices were reviewed at 35 harbor sites across Nova Scotia and their limitations identified in a gap analysis. Improved site management was developed following this review and consultation with interested marine stakeholders. New disposal options and chemical analyses were proposed, along with improvements to cost efficiencies for management of dredged marine sediments in Atlantic Canada. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
A sulfuric acid leak in 1988 at a chloroethene‐contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long‐term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's‐based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30‐m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides‐type bacteria within the sulfuric acid/chloroethene co‐contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C‐TCE and 14C‐VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co‐contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's‐based source area treatment) do not necessarily preclude efficient chloroethene degradation. © 2007 Wiley Periodicals, Inc.  相似文献   

12.
Many Superfund/hazardous chemical sites include waterbodies whose sediments contain hazardous chemicals. With the need to assess, rank, and remediate contaminated sediments at such sites, as well as in other waterways, regulators seek a simple, quantitative assessment approach that feeds easily into a decision‐making scheme. Numeric, co‐occurrence‐based “sediment quality guidelines” have emerged with the appearance of administrative simplicity. However, the very foundation of the co‐occurrence approach, based on the total concentrations of a chemical(s) in sediment, is technically invalid; its application relies on additional technically invalid presumptions. Use of technically invalid evaluation approaches renders any assessment of the significance of sediment contamination unreliable. This article reviews the technical roots and assumptions of the co‐occurrence‐based SQGs, the fundamental flaws in the rationale behind their development and application, and their misapplication for sediment quality evaluation. It also reviews concepts and approaches for the more reliable evaluation, ranking, and cleanup assessment of contaminated sediments at Superfund sites and elsewhere. © 2005 Wiley Periodicals, Inc.  相似文献   

13.
In tests conducted for the Canadian government on sediment from Thunder Bay Harbour, Ontario, the BioGenesis washing process was demonstrated to be effective in remediating contaminated harbor sediments. Removal efficiencies for 16 polyaromatic hydrocarbons (PAHs) in concentrations exceeding 4,000 parts per million averaged 90 to 95 percent in pilot tests. These results are significant because, until now, washing processes have not proven effective in cleaning the small-size particles of silt and clay that make up most underwater sediments. In Thunder Bay, 81 percent of the particles were less than 38 microns (medium silt) in size. The tests on Thunder Bay sediment were conducted under the auspices of the Contaminated Sediment Treatment Technology Program of Environment Canada's Wastewater Technology Centre. Thunder Bay Harbour is one of 43 “areas of concern” identified by the International Joint Commission of Great Lakes Water Quality.  相似文献   

14.
The Gowanus Canal Superfund Site in Brooklyn, New York, is an approximately 1.5‐mile (1.61‐km) long estuary that was historically converted into a canal for industrial and commercial purposes. Three manufactured gas plants (MGPs) were formerly located on the Gowanus Canal and discharged waste into it. Surface sediments remain highly contaminated with polycyclic aromatic hydrocarbons (PAHs) long after the MGPs were razed. A hydrogeologic assessment indicates that groundwater passes through the deeper coal tar–contaminated sediment prior to discharging to the canal. This study was undertaken to investigate if groundwater passing through coal tar–contaminated sediment could be responsible for the ongoing contamination of both surface sediments and surface water in the canal. PAH compound distributions in surface water samples collected from the tidal canal at low tide were compared with PAH compounds found in adjacent groundwater‐monitoring wells, point sources (combined sewer overflows [CSOs]), and surface sediments. The results indicate a strong correlation between PAH contaminant distributions in groundwater, sediment, and surface water, indicating that contaminated groundwater passing through the deeper coal tar–contaminated sediments is the primary mechanism contributing to the contamination of both surface sediment and surface water in the canal. Therefore, any sediment remediation efforts in the Gowanus Canal that fail to evaluate and control the upward transport processes have a high chance of failure due to recontamination from below.  ©2016 Wiley Periodicals, Inc.  相似文献   

15.
In 1970, approximately 2000 m3 of Bunker C crude oil impacted 300 km of Nova Scotia’s coastline following the grounding of the tanker Arrow. Only 10% of the contaminated coast was subjected to cleanup, the remainder was left to cleanse naturally. To determine the long-term environmental impact of residual oil from this spill event, samples of sediment and interstitial water were recovered in 1993, 1997 and 2000 from a sheltered lagoon in Black Duck Cove. This heavily oiled site was intentionally left to recover on its own. Visual observations and chemical analysis confirmed that substantial quantities of the weathered cargo oil were still present within the sediments at this site. However, direct observations of benthic invertebrate abundance suggest that natural processes have reduced the impacts of the residual oil. To confirm this hypothesis, sediment and interstitial water samples from Black Duck Cove were assessed with a comprehensive set of biotests and chemical assays.Residual oil in the sediments had limited effect on hepatic CYP1A protein levels and mixed function oxygenase (MFO) induction in winter flounder (Pleuronectes americanus). No toxicity was detected with the Microtox solid phase test (Vibrio fischeri). Significant sediment toxicity was detected by the amphipod survival test (Eohaustorius estuarius) in four out of the eight contaminated sediments. Interstitial water samples were deemed non-toxic by the Microtox 100% test (Vibrio fischeri) and the echinoid fertilization test (Lytechinus pictus). Sediment elutriates were also found to be non-toxic in the grass shrimp embryo-larval toxicity (GSELTOX) test (Palaemonetes pugio).Recovery at this contaminated site is attributed to natural processes that mediated biodegradation and physical removal of oil from the sediments. In support of the latter mechanism, mineralization experiments showed that all test sediments had the capacity for hexadecane, octacosane and naphthalene degradation, while chemical analysis confirmed that the Bunker C oil from the Arrow had undergone substantial biodegradation.  相似文献   

16.
White-rot fungi applied for soil bioremediation have to compete with indigenous soil microorganisms. The effect of competition on both indigenous soil microflora and white-rot fungi was evaluated with regard to degradation of polycyclic aromatic hydrocarbons (PAH) with different persistence in soil. Sterile and non-sterile soil was artificially contaminated with 14C-labeled PAH consisting of three (anthracene), four (pyrene, benz[a]anthracene) and five fused aromatic rings (benzo[a]pyrene, dibenz[a,h]anthracene). The two fungi tested,Dichomitus squalens and Pleurotus ostreatus, produced similar amounts of ligninolytic enzymes in soil, but PAH mineralization by P. ostreatus was significantly higher. Compared to the indigenous soil microflora, P.ostreatus mineralized 5-ring PAH to a larger extent, while the indigenous microflora was superior in mineralizing 3-ring and 4-ring PAH. In coculture the special capabilities of both soil microflora and P. ostreatus were partly restricted due to antagonistic interactions, but essentially preserved. Thus, soil inoculation with P. ostreatus significantly increased the mineralization of high-molecular-weight PAH, and at the same time reduced the mineralization of anthracene and pyrene. Regarding the mineralization of low-molecular-weight PAH, the stimulation of indigenous soil microorganisms by straw amendment was more efficient than application of white-rot fungi.  相似文献   

17.
Cootes Paradise is a coastal wetland, adjacent to Hamilton Harbour at the western tip of Lake Ontario. The marsh has been considerably degraded due to the excessive sediment and nutrient input from sewage treatment plants (STPs), marsh tributaries and Combined Sewer Overflows (CSOs). Although there has been reduction in nutrient loadings from external sources, high nutrient levels, and a prolific algal growth remain a problem in Cootes Paradise. To assess the importance of external versus internal nutrient loadings to the marsh, nutrient fluxes from sediments were estimated using porewater profiles at three locations from 2001 and five additional sites from 2002. The fluxes varied between 0.27 and 5.25 mg P m−2 day−1, with sites receiving outfalls of STP and CSO having highest fluxes (∼5 mg P m−2 day−1). Mean phosphorus release rate of 2.02 mg P m−2 day−1 was calculated from the spatial distribution of the non-apatite inorganic phosphorus (NAI-P) in sediments, employing a relationship between the NAI-P and P fluxes. The results confirm that sediment P geochemistry is important in regulating the P pool in porewater which, consequently, governs the P fluxes from sediments.  相似文献   

18.
Phosphogypsum chemistry under highly anoxic conditions   总被引:2,自引:0,他引:2  
Phosphogypsum (PG), primary byproduct from phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. Contaminants emanating from PG stacks can impact the environment including waterbodies. The major constraint for PG use in the environment is the presence of metals in high concentrations. Reduction of sulfate found in PG and significance of sulfide production in reducing aqueous concentrations of toxic metals were studied. Mississippi River alluvial sediment amended with PG was equilibrated under controlled redox (-250 mV) and pH (5.5, 6.5, and 7.5) conditions. Phosphogypsum addition resulted in a large increase in sulfide levels in sediment suspensions. As a result, the solubility of spiked heavy metals (Cd and Cr, 100 and 1000 mg kg(-1)) and natural trace elements (As, Ba, and Cd) was significantly reduced by precipitation as insoluble sulfides. Sediment pH also influenced sulfate reduction and sulfide formation in both PG-amended and control sediment. Low sediment pH (5.5) resulted in the highest release of all studied metals and sulfate into sediment solution. This study indicates that if PG or PG-products are placed in neutral to alkaline sediments/soils and/or reducing environments, metals released at toxic levels should be of little concern to the wetland environment.  相似文献   

19.
Changes in the toxicity levels of beach sediment, nearshore water, and bottom sediment samples were monitored with the Microtox® Test to evaluate the two in situ oil spill treatment options of natural attenuation (natural recovery--no treatment) and sediment relocation (surf washing). During a series of field trials, IF-30 fuel oil was intentionally sprayed onto the surface of three mixed sediment (pebble and sand) beaches on the island of Spitsbergen, Svalbard, Norway (78°56 N, 16°45 E). At a low wave-energy site (Site 1 with a 3-km wind fetch), where oil was stranded within the zone of normal wave action, residual oil concentrations and beach sediment toxicity levels were significantly reduced by both options in less than five days. At Site 3, a higher wave-energy site with a 40-km wind fetch, oil was intentionally stranded on the beach face in the upper intertidal/supratidal zones, above the level of normal wave activity. At this site under these experimental conditions, sediment relocation was effective in accelerating the removal of the oil from the sediments and reducing the Microtox® Test toxicity response to background levels. In the untreated (natural attenuation) plot at this site, the fraction of residual oil remaining within the beach sediments after one year (70%) continued to generate a toxic response. Chemical and toxicological analyses of nearshore sediment and sediment-trap samples at both sites confirmed that oil and suspended mineral fines were effectively dispersed into the surrounding environment by the in situ treatments. In terms of secondary potential detrimental effects from the release of stranded oil from the beaches, the toxicity level (Microtox® Test) of adjacent nearshore sediment samples did not exceed the Canadian regulatory limit for dredged spoils destined for ocean disposal.  相似文献   

20.
Obtaining lines of evidence indicating that contamination in sediment environments is degrading and being transformed to less toxic forms is an important component of building support for a monitored natural recovery remedy for contaminated sediments. This project was a field demonstration of manufactured gas plant contaminant degradation in river sediments using metabolic gas flux and was performed in an urban area section of a river in northeastern Indiana. CO2 sorbent traps were deployed to measure CO2 flux from the river sediments. Sediment samples were collected and analyzed for polycyclic aromatic hydrocarbon (PAH) concentrations and for microbial community composition using molecular techniques. The results showed that the deployment was successful, measuring CO2 flux at all sediment locations and demonstrating that microbial contaminant degrading activity was occurring in the sediments. Radio carbon dating showed a significant portion of the CO2 being generated (approximately 19–27 percent) was the result of fossil fuel degradation. Molecular results showed that the microbial community consisted of phylotypes known to be associated with monocyclic aromatic and PAH degradation. ©2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号