首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
Sisal fibers bleached with sodium-hydroxide followed by hydrogen peroxide treatment were incorporated in a thermoplastic starch/ε-polycaprolactone (TPS/PCL) blend via extrusion processing. These samples with smooth and homogenous surfaces were examined for their property, biodegradability and water absorption. Scanning electron microscopy revealed that the fibers were well dispersed in the matrix. In addition, it was found that the fibers and matrices interacted strongly. Blends with 20 % (dry weight-basis) fiber content showed some fiber agglomeration. Whereas blends with 10 % fibers showed increased crystallinity and lower water absorption capacity. The CO2 evolution study showed that the thermoplastic starch samples without any additives had the highest rate and extent of degradation whereas the neat PCL samples had the lowest degradation rate. Addition of fiber to the TPS/PCL blend exhibited the degradation rates and extents that were somewhere in between the pure TPS and neat PCL. This work demonstrates that TPS/PCL composites reinforced with bleached sisal has superior structural characteristics and water resistance and thus, can be used as polymeric engineering composites for different applications.  相似文献   

2.
In this study, a biodegradable composite consisting of a degradable continuous cellulosic fiber and a degradable polymer matrix—poly(3-hydroxybutyrate)-co-poly(3-hydroxyvalerate (PHB/V with 19% HV)—was developed. The composite was processed by impregnating the cellulosic fibers on-line withPHB/V powder in a fluidization chamber. The impregnated roving was then filament wound on a plate and hot-pressed. The resulting unidirectional composite plates were mechanically tested and optically characterized by SEM. The fiber content was 9.9 ±0.9 vol% by volumetric determination. The fiber content predicted by the rule of mixture for unidirectional composites was 13.8 ±1.4 vol%. Optical characterization showed that the fiber distribution was homogeneous and a satisfactory wetting of the fibers by the matrix was achieved. Using a blower to remove excess matrix powder during processing increased the fiber content to 26.5 ±3.3 vol % (volumetric) or 30.0 ±0.4 vol% (rule of mixture). The tensile strength of the composite parallel to the fiber direction was 128 ±12 MPa (10 vol% fiber) up to 278 ±48 MPa (26.5 vol% fiber), compared to 20 MPa for the PHB/V matrix. The Young’s modulus was 5.8 ±0.5 GPa (10 vol% fiber) and reached 11.4 ±0.14 GPa (26.5 vol% fiber), versus 1 GPa for the matrix.  相似文献   

3.
Biodegradable composites can be produced by the combination of biodegradable polymers (BP) as matrix and vegetal fibers as reinforcement. Composites of a commercial biodegradable polymer blend and curauá fibers (loaded at 5, 15 and 20 wt%) were prepared by melt mixing in a twin-screw extruder. Chemical treatments such as alkali treatment of the fiber and addition of maleic anhydride grafted polypropylene (MA-g-PP) as coupling agent were performed to promote polymer/fiber interfacial adhesion so that mechanical performance can be improved. The resulting composites were evaluated through hardness, melt flow index and tensile, flexural and impact strengths as well as water absorption. Thermal analysis and Fourier transform infrared spectroscopy were also employed to characterize the composites. The polymer/fiber interface was investigated through scanning electron microscopy analysis. The biodegradability of composites was evaluated by compost-soil burial test. The addition of curauá fiber promoted an increase in the mechanical strengths and composites treated with 2 wt% MA-g-PP with 20 wt% curauá fiber showed an increase of nearly 75% in tensile and 56% in flexural strengths besides an improvement in impact strength with respect to neat polymer blend. Nevertheless, treated composites showed an increase in water absorption and biodegradation tests showed that the addition of fiber retards degradation time. The retained mass of BP/20 wt% fiber composite with MA-g-PP and neat BP was 68 and 26%, respectively, after 210 days of degradation test.  相似文献   

4.
Poly(vinyl chloride) (PVC) and natural fiber composites were prepared by melt compounding and compression molding. The influence of fiber type (i.e., bagasse, rice straw, rice husk, and pine fiber) and loading level of styrene-ethylene-butylene-styrene (SEBS) block copolymer on composite properties was investigated. Mechanical analysis showed that storage modulus and tensile strength increased with fiber loading at the 30% level for all composites, but there was little difference in both properties among the composites from various fiber types. The use of SEBS decreased storage moduli, but enhanced tensile strength of the composites. The addition of fiber impaired impact strength of the composites, and the use of SEBS led to little change of the property for most of the composites. The addition of fiber to PVC matrix increased glass transition temperature (Tg), but lowered degradation temperature (Td) and thermal activation energy (Ea). After being immersed in water for four weeks, PVC/rice husk composites presented relatively smaller water absorption (WA) and thickness swelling (TS) rate compared with other composites. The results of the study demonstrate that PVC composites filled with agricultural fibers had properties comparable with those of PVC/wood composite.  相似文献   

5.
Polylactic acid (PLA) is a hydrolytically degradable aliphatic polyester. The rate of polymer hydrolysis increases with time, and that has been attributed to the high reactivity of the terminal ester and the kinetics of autocatalysis. Hydrolysis is carried out in an acetonitrile/water solution to eliminate any solid-state contributions such as diffusion and crystallinity to the degradation process. A kinetic equation is derived to describe the autocatalytic effect of the increasing carboxylic acid end-group concentration. The results of solution hydrolysis are examined and found to fit the derived equation. Hydrolysis was also carried out with polycaprolactone (PCL) in acetonitrile, where reaction kinetics were found to differ from those of PLA. The PCL polymer required external acid catalysis by the addition of HCl, whereas hydrolysis of PLA was selfcatalyzed by the carboxylic acid end-groups.  相似文献   

6.
Green composites of regenerated cellulose short fibers/cellulose were prepared by dissolving cellulose in a green solvent of 7% NaOH/12% Urea aqueous solution that was pre cooled at ?12?°C. The effect of fiber loading on the tensile, optical, thermal degradation and cell viability was studied. The tensile properties of cellulose were improved by the regenerated cellulose fiber reinforcement. The interfacial bonding between the fibers and matrix was assessed using the fractographs and found it to be good.  相似文献   

7.
The degradation products of polymers are identifiable by chromatography. The degradation product patterns (or fingerprints) formed depend on the type of polymer, the degradation mechanism(s), and also the type of additive present in the material. The chromatographic fingerprint of biotically aged degradable low-density polyethylene (i.e., LDPE+starch+prooxidant) shows, in particular, the absence of low molecular weight carboxylic acids, which suggests an assimilation of these carboxylic acids by the microorganisms. The degradation products of natural polymers are usually intermediates that are used again in the anabolic cycles. It is possible to transfer the terminology from the natural polymers, where the catabolism of natural polymers consists of three stages, and apply this also to the degradable synthetic polymers. During stage I the natural polymers degrade to their major building blocks (e.g., amino acids, glycerol, hexoses, pentoses, etc.), during stage II these products are collected and converted to a smaller number of even simpler molecules [e.g., acetyl-coenzyme A (CoA)]. In stage III, finally, the acetyl-CoA enters the citric acid cycle, where energy is gained in parallel with the release of CO2 and H2O.Presented at the international workshop,Polymers from Renewable Resources and their Degradation, Stockholm, Sweden, November 10–11, 1994.  相似文献   

8.
Biocomposites were made by a novel high volume processing technique named biocomposite sheet molding compound panel (BCSMCP) manufacturing process. This process design was inspired by the commercial glass fiber–polyester resin composite fabrication method called sheet molding compounding (SMC). This process yields continuous production of biocomposites on a large scale, and thus can be easily adopted in industries. A unique fiber dispersion method, which enabled uniform distribution of natural fibers, was used in this process. Consistency of the process was tested by evaluating the repeatability of the resultant materials mechanical properties. The low cost biocomposites produced as a result of the processing will be used for various panel applications such as housing and transportation. The molded samples were tested for various mechanical and thermal properties, in accordance with ASTM procedures. The biocomposites were made with various natural fibers including, big blue stem grass, jute, and industrial hemp. By combining different natural fibers in varying mass fractions, hybrid biocomposites were made using this process. Grass fiber reinforced polyester biocomposites processed by the SMC line showed very promising results.  相似文献   

9.
The effect of orientation in the amorphous and crystalline regions on the biodegradability of PTMS [poly(tetramethylene succinate)] was studied using the amorphous orientation function, birefringence, and crystallinity. The crystalline and amorphous intrinsic lateral sonic moduli, E t,c 0 and E t,am 0 , were 2.61 × 103 and 0.41 × 103 MPa, respectively. Using the data on birefringence, crystalline and amorphous orientation function (f and f am), crystallinity, and sonic modulus of the oriented PTMS fibers, the intrinsic birefringence of the crystalline ( c 0 ) and amorphous ( am 0 ) regions were evaluated to be 0.0561 and 0.0634, respectively. The biodegradabilities of oriented PTMS films were reduced as the elongation increased, i.e., the amorphous orientation increased. At low elongation (100 and 150%), however, biodegradabilities remained unchanged when the degradation test was performed in activated sludge, which was attributed to the amorphous orientation occurring even at 100% elongation, though the amorphous orientation direction was perpendicular to the fiber axis.  相似文献   

10.
Short fiber reinforced polymer composites were prepared from lignocellulose fibers and feather keratin polymer (FKP). The FKP matrix was prepared from the reactive processing of poultry feather keratin, glycerol, water, and sodium sulfite. Lignocellulose fibers of varying source, length, and mass fraction were used and it was found that positive reinforcement of FKP was affected by all three. Positive reinforcement was defined as an increase in elastic modulus when normalized by FKP with the same amount of glycerol but no fibers. Positive reinforcement was only able to occur for modulus but not stress at break indicating that the composites were of high physical properties only under small deformations. At large deformations, fiber pull-out was observed in the composites using scanning electron microscopy. The most likely origin of this behavior appeared to be from weak fiber–polymer interactions dominated by friction and rationalized by a force balance across the fiber–polymer interface. High fiber loadings were shown to be reinforcing because of the formation of a network of lignocellulose fibers. The addition of lignocellulose fibers increased the thermal stability of the material.  相似文献   

11.
In this study, the influence of alkali (NaOH) treatment on the mechanical, thermal and morphological properties of eco-composites of short flax fiber/poly(lactic acid) (PLA) was investigated. SEM analysis conducted on alkali treated flax fibers showed that the packed structure of the fibrils was deformed by the removal non-cellulosic materials. The fibrils were separated from each other and the surface roughness of the alkali treated flax fibers was improved. The mechanical tests indicated that the modulus of the untreated fiber/PLA composites was higher than that of PLA; on the other hand the modulus of alkali treated flax fiber/PLA was lower than PLA. Thermal properties of the PLA in the treated flax fiber composites were also affected. Tg values of treated flax fiber composites were lowered by nearly 10 °C for 10% NaOH treatment and 15 °C for 30% NaOH treatment. A bimodal melting behavior was observed for treated fiber composites different than both of neat PLA and untreated fiber composites. Furthermore, wide angle X-ray diffraction analysis showed that the crystalline structure of cellulose of flax fibers changed from cellulose-I structure to cellulose-II.  相似文献   

12.
The standard test method ASTM D 5988-96 for determining the degree and rate of aerobic biodegradation of plastic materials in contact with soil was applied to poly(3-hydroxybutyrate) and poly(-caprolactone). The method proved to be reliable and supplied reproducible measurements of CO2 production, provided potassium (instead of barium) hydroxide was used as a trapping solution. The trends of CO2 evolution, as a function of time, observed for the degradation of polymer powders in soil are similar to those predicted by simple first order kinetics in solution. The experimental data are described by a Michaelis–Menten type model, which accounts for the heterogeneity of the polymer-soil system. The kinetic equation deduced predicts the degradation rate to the proportional to the exposed polymer surface area.  相似文献   

13.
This research dealt with a novel method of fabricating green composites with biodegradable poly (lactic acid) (PLA) and natural hemp fiber. The new preparation method was that hemp fibers were firstly blending-spun with a small amount of PLA fibers to form compound fiber pellets, and then the traditional twin-screw extruding and injection-molding method were applied for preparing the composites containing 10–40 wt% hemp fibers with PLA pellets and compound fiber pellets. This method was very effective to control the feeding and dispersing of fibers uniformly in the matrix thus much powerful for improving the mechanical properties. The tensile strength and modulus were improved by 39 and 92 %, respectively without a significant decrease in elongation at break, and the corresponding flexural strength and modulus of composites were also improved by 62 and 90 %, respectively, when the hemp fiber content was 40 wt%. The impact strength of composite with 20 wt% hemp fiber was improved nearly 68 % compared with the neat PLA. The application of the silane coupling agent promoted further the mechanical properties of composites attributed to the improvement of interaction between fiber and resin matrix.  相似文献   

14.
Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torque rheometer (120 °C, 50 rpm) for 6 min. The mixtures obtained were molded by heat compression and further characterized. Addition of lignocellulosic fibers in the matrix decreased the water absorption at equilibrium. The diffusion coefficient decreased sharply around 5% fiber concentration, and further fiber additions caused only small variations. The thermogravimetric (TG) analysis revealed improved thermal stability of matrix upon addition of fibers. The Young’s modulus and ultimate tensile strength increased with fiber content in the matrix. The storage modulus increased with increasing fiber content, whereas tanδ curves decreased, confirming the reinforcing effect of the fibers. Morphology of the composites analyzed under the scanning electron microscope (SEM) exhibited good interfacial adhesion between the matrix and the added fibers. Matrix degraded rapidly in compost, and addition of increased amounts of coconut fiber in the matrix caused a slowdown the biodegradability of the matrix. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may be suitable.  相似文献   

15.
Natural cellulosic fibers are one of the smartest materials for use as reinforcement in polymers possessing a number of applications. Keeping in mind the immense advantages of the natural fibers, in present work synthesis of natural cellulosic fibers reinforced polymer composites through compression molding technique have been reported. Scanning Electron microscopy (SEM), Thermo gravimetric/Differential thermal/Derivative Thermogravimetry (TGA/DTA/DTG), absorption in different solvents, moisture absorbance, water uptake and chemical resistance measurements were used as characterization techniques for evaluating the different behaviour of cellulosic natural fibers reinforced polymer composites. Effect of fiber loading on mechanical properties like tensile strength, flexural strength, compressive strength and wear resistances has also been determined. Reinforcing of the polymer matrix with natural fibers was done in the form of short fiber. Present work indicates that green composites can be successfully fabricated with useful mechanical properties. These composites may be used in secondary structural applications in automotive, housing etc.  相似文献   

16.
In experiments employing the lignocellulose-decaying basidiomycetes Trametes versicolor and Stropharia rugosoannulata degrading uniformly14C-labelled 2,4-dichlorophenol and pentachlorophenol, acombination of size exclusion chromatography (SEC),fractionation, and -scintillation counting wasapplied to quantify polymerisation products formed duringchlorophenol degradation. Time-dependent mass balances weregenerated by analysis of 14C in polymerisation products,CO2, as well as monomer non-polar and polar metabolites.Approximately 30% of the chlorophenols were found to bepolymerised. A major fraction of the polymerised productscorresponded to a molecular weight range from 0.24 – 40 kDa.Only a minor fraction could be attributed to a molecularweight >40 kDa. This method proved to be useful inquantification of polymerisation products and kinetics of thepolymerisation processes, whereas UV/Vis detection ofpolymerisation products separated by SEC led to false positiveresults. The SEC-14C method could also be applied forother complex processes where polymerisation ordepolymerisation occurs (humification, degradation oflignocellulose, formation of bound residues from xenobioticssuch as polycyclic aromatic hydrocarbons or 2,4,6-trinitrotoluene) and where spectrophotometric determinationsare difficult or impossible.  相似文献   

17.
Treated sisal fibers were used as reinforcement of polypropylene (PP) composites, with maleic anhydride-grafted PP (MAPP) as coupling agent. The composites were made by melting processing of PP with the fiber in a heated roller followed by multiple extrusions in a single-screw extruder. Injection molded specimens were produced for the characterization of the material. In order to improve the adhesion between fiber and matrix and to eliminate odorous substances, sisal fibers were treated with boiling water and with NaOH solutions at 3 and 10 wt.%. The mechanical properties of the composites were assessed by tensile, bend and impact tests. Additionally, the morphology of the composites and the adhesion at he fiber–matrix interface were analyzed by SEM. The fiber treatment led to very light and odorless materials, with yields of 95, 74 and 62 wt.% for treatments with hot water, 3 and 10 wt.% soda solution respectively. Fiber treatment caused an appreciable change in fiber characteristics, yet the mechanical properties under tensile and flexural tests were not influenced by that treatment. Only the impact strength increased in the composites with alkali-treated sisal fibers.  相似文献   

18.
The synthetic analogue of a bacterially produced polyester, poly(-hydroxybutyrate) (PHB) was synthesized from racemic -butyrolactone using anin situ trimethyl aluminum-water catalyst. The polymer was fractionated into samples differing in molecular weight and isotactic diad content. The latter was closely related to degree of crystallinity. The biodegradation of these fractions were examined by monitoring mass loss over time in the presence of anAlcaligenes faecalis T1 extracellular bacterial poly(-hydroxybutyrate) depolymerase. The fraction with high isotactic diad tacticity content showed little or no degradation over a 50 hour incubation period, whereas the fraction of intermediate isotactic diad content degraded in a continuous steady fashion at a rate that was less than that for bacterial PHB. The low isotactic diad fraction underwent a rapid initial degradation, followed by no further mass loss. The presence of stereoblocks in the polymer structure of the various fractions was an influence on the degree of susceptibility towards degradation and is related to sample crystallinity.  相似文献   

19.
This work focused on the durability of short jute fiber reinforced poly(lactic acid) (PLA) composites in distilled water at different temperatures (23, 37.8 and 60 °C). Morphological, thermal and mechanical properties (tensile, flexural, and impact) of jute/PLA composites were investigated before and after aging. Different from traditional synthetic fiber reinforced polymer composites, the stability of jute/PLA composites in water was significantly influenced by hydrothermal temperature. The mechanical properties of the composites and molecular weight of PLA matrix declined quickly at 60 °C, however, this process was quite slower at temperatures of 23 and 37.8 °C. Impact properties of the composites were hardly decreased, but the tensile and flexural properties suffered a drop though to various degrees with three degradation stages at 23 and 37.8 °C. The poor interface of composites and the degradation of PLA matrix were the main damage mechanism induced by hydrothermal aging. Furthermore, considering the hydrolysis of PLA matrix, the cleavage of PLA molecular chain in different aging time was quantitatively investigated for the first time to illustrate hydrolysis degree of PLA matrix at different aging time.  相似文献   

20.
The apparent biodegradability and biocompatibility of the microbially produced polyester, poly(-hydroxybutyrate) (PHB), has been the focus of much research by a number of authors with regard to its potential for use in packaging and medical implantation devices. PHB has recently been produced by gel-spinning into a novel form, with one possible application being as a wound scaffolding device, designed to support and protect a wound against further damage while promoting healing by encouraging cellular growth on and within the device from the wound surface. This new nonwoven form combines a large volume with a low mass, has an appearance similar to that of cotton wool, and has been called wool because of this similarity. The hydrolytic degradation of this wool was investigated in an accelerated model of pH 10.6 and temperature 70°C. It was determined that the PHB wool gradually collapsed during degradation. The surface area-to-volume ratio was concluded to be a primary influencing factor. Degradation was characterized by a reduction in the glass transition temperatures and melting points and a fusion enthalpy peak of maximum crystallinity, (88%), which coincided with the point of matrix collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号