首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Removal of toxic pollutants from water and wastewater is becoming an important process with the increase of industrial activities. The present study focused on assessing the suitability and efficiency of water bamboo leaves (WBL) for the removal of cationic dye from aqueous solutions. The effect of different variables in the batch method including solution pH (2–12), initial dye concentration (50–250 mg L?1), adsorbent dose (0.05–0.30 g), contact time (5–180 min) and temperature (283–333 K) on the dye removal was investigated. The adsorption kinetics was discussed in view of four kinetics models. The results showed that the pseudo-second-order kinetics model described dye adsorption on WBL very well. The experimental equilibrium data were also tested by four isotherm models. It was found that adsorption of dye on WBL fitted well with the Langmuir isotherm model, implying the binding energy on the whole surface of the adsorbent was uniform and the dye molecules onto the surface of the adsorbent were monolayer coverage. Calculation of various thermodynamic parameters of the adsorption process indicated feasibility and exothermic nature of dye adsorption.  相似文献   

2.
Thorium(Th) contamination in the ground water an emerging environmental issue and Th recovery from sea water and nuclear wastewater is of high significance, as it is a major player in the energy sector. For the adsorption and recovery of Th, polymer grafted bio materials are reported as most efficient materials. P(IA/MAA)-g-NC/NB was prepared and all the steps in the synthetic routes were monitored using FTIR, SEM–EDS, and XRD, TG. Efficiency in removal of Th(IV) by P(IA/MAA)-g-NC/NB was tested by batch adsorption technique. The pH dependent Th(IV) adsorption process, was optimized at 4.5 and adsorption equilibrium was achieved within 120 min. Experimental kinetic data correlates well with pseudo-second-order equation, indicates adsorption was chemical process via ion exchange followed by complexation reaction, also could explain the film diffusion process of adsorption. Sips isotherm proved to best fit for the adsorption of Th(IV) onto P(IA/MAA)-g-NC/NB with maximum adsorption capacity of 95.19 mg/g. Thermodynamic studies revealed the endothermic nature, feasibility and spontaneity of the adsorption process. ΔHx and ΔSx were decreased to a small extent from ?5.567 to ?3.439 kJ/mol and increased from 11.18 to 18.39 J/mol, respectively, with increase in surface loading from 50 to 70 mg/g, indicating that the surface of the onto P(IA/MAA)-g-NC/NB is having energetically heterogeneous surface and there may be some lateral interactions between the adsorbed Th(IV) ions Repeated adsorption–desorption study over six cycles, adsorption percentage decreases from 99.0 to 94.6 %, proved the efficiency of P(IA/MAA)-g-NC/NB as an effective adsorbent for the removal and recovery of Th(IV) from aqueous solutions. Complete removal of Th(IV) ions from seawater containing 10 mg/L with a dose of 0.25 g/L P(IA/MAA)-g-NC/NB achieved. Batch adsorption system as double stage reactor designed from the adsorption isotherm data of Th(IV) by constructing operational lines. From these could be concluded that P(IA/MAA)-g-NC/NB is a promising candidate for the effective removal and removal of Th(IV) from industrial effluents phase and sea water. The maximum adsorption capacity Qs for Ceralite IRC-50 calculated which was found to be 179.67 mg/g which are considerably lower than those for P(IA/MAA)-g-NC/NB.  相似文献   

3.
The multiwall carbon nanotubes (MWCNTs) were modified by 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) via grafting reaction and γ-rays of 60Co source was used as initiator. The outcome product was called hydroxyethylated (HOEt-MWCNTs) graft poly(AMPS) and abbreviated as HOEt-MWCNTs-g-PAMPS. The parameters that affected the grafting yield were optimized. The maximum grafting obtained was ~20 %. HOEt-MWCNTs-g-PAMPS were characterized by Fourier transform infra red, scanning electron microscopy, high resolution transmission electron microscopy, thermal gravimetric analysis. The adsorptive removals of malachite green chloride (MGC) and reactive red 198 (RR-198) onto HOEt-MWCNTs-g-PAMPS were studied at variable conditions. The adsorption isotherms were analyzed using Langmuir, Redlich–Peterson, Freundlich, Khan and Sips models. The results referred that Sips model is the best fitting to adsorption of MGC and Freundlich model is the best fitting to RR-198 adsorption. The monolayer coverage capacities of HOEt-MWCNTs-g-PAMPS for MGC and RR-198 dyes were found 172 and 323 mg g?1, respectively. The rate of kinetic adsorption processes of MGC and RR-198 onto HOEt-MWCNTs-g-PAMPS were described by using pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-first order and pseudo-second order models were the best choice among the kinetic models to depict the adsorption behaviors of MGC and RR-198 dyes onto HOEt-MWCNTs-g-PAMPS, respectively. Further, the effect of temperature on the adsorption isotherms was investigated and the thermodynamic parameters were obtained. The results indicated that the adsorption process is spontaneous and endothermic. The values of ΔG° varied in range with the mean values showing a gradual increase from ?3.17 to ?3.64 kJ mol?1 for MGC and ?3.36 to ?3.73 kJ mol?1 for RR-198. The reusability and regeneration of adsorbent were investigated. The outcome data referred to that the efficiency of adsorbent >98 %. The outline results declared that there is a good potentiality for the HOEt-MWCNTs-g-PAMPS to be used as an adsorbent for the removal of MGC and RR-198 from aqueous solutions.  相似文献   

4.
Chitosan as a biopolymer, biodegradable, safe, non-toxic and widely abundant in nature was grafted with poly(2-hydroxyaniline) (P2-HA) through aqueous chemical oxidative copolymerization using ammonium persulphate in acetic acid medium. The grafting conditions were studied by varying grafting parameters. The effect of oxidant, 2-hydroxyaniline (2-HA) and acetic acid concentrations on the rate of copolymerization was studied. The synthesized graft characterized using UV–Vis, FTIR, TGA, XRD, and scanning electron microscope and compared with chitosan and P2-HA. The grafting enhances the thermal properties of chitosan. The effect of temperature on the rate of grafting copolymerization reaction was studied. The apparent activation energy (Ea) of the copolymerization reaction found to be 21.1116 kJ/mol. Also, ΔH* and ΔS*, were calculated and found to 22.8630 kJ/mol and ?109.4290 J/mol K respectively. The mechanism of the grafting copolymerization reaction discussed. Chitosan, P2-HA and chitosan-graft-P2-HA used for the removal of Cr, Fe, Mn, Cu and Zn divalent ions from a contaminated water samples. The adsorption isotherm parameters are given.  相似文献   

5.
This research article describes, an eco-friendly activated carbon prepared from the Gracilaria corticata seaweeds which was employed for the preparation of biodegradable polymeric beads for the efficient removal of crystal violet dye in an aqueous solution. The presence of chemical functional groups in the adsorbent material was detected using FTIR spectroscopy. The morphology and physical phases of the adsorbent materials were analyzed using SEM and XRD studies respectively. Batch mode dye adsorption behavior of the activated carbon/Zn/alginate polymeric beads was investigated as a function of dosage, solution pH, contact time, initial dye concentration and temperature. Maximum dye removal was observed at a pH of 5.0, 1 g of adsorbent dosage with 60 mg/L dye concentration, 50 min of contact time and at 30 °C. The equilibrium modeling studies were analyzed with Freundlich and Langmuir adsorption isotherms and the adsorption dynamics was predicted with Lagergren’s pseudo-first order, pseudo-second order equations and intra particle diffusion models. The process of dye removal followed a pseudo second-order kinetics rather than pseudo first order. The thermodynamic parameters like standard Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined and the results imply that the adsorption process was spontaneous, endothermic and increases the randomness between the adsorbent and adsorbate. The results from the experimental and correlation data reveal that the Gracilaria corticata activated carbon/Zn/alginate polymeric beads have proved to be an excellent adsorbent material for the removal of CV dye.  相似文献   

6.
High fluoride levels in drinking water have become a critical health hazard. In the present study, the performance of magnesia-loaded fly ash adsorption in the removal of fluoride from aqueous solution was investigated in a batch study. The effect of contact time, dosage, pH, temperature and agitation speed was studied at different values. The maximum removal efficiency was 88 % at 150 min. The effective dose of adsorbent was found to be 2.5 g/l. The optimum pH was found to be at pH 4. Kinetic studies and isotherm studies were also performed to understand the ability of the adsorbents. The monolayer adsorption capacity determined from the Langmuir adsorption equation was found to be 11.61 mg/g. The kinetic measurements suggested the involvement of pseudo-second-order kinetics in adsorption and were controlled by a particle diffusion process. Overall, the results of this study suggest that magnesia-loaded fly ash is an environmentally friendly, efficient and low-cost adsorbent, useful for the removal of fluoride from aqueous solution.  相似文献   

7.
The present study concerns with exploring the possibility of using of tartaric acid pretreated sugarcane bagasse (SCB) for removing diazonium blue (DB) from aqueous solutions. The effect of different factors on the efficiency of the adsorbent for the DB dye removal was investigated, including initial dye concentration, contact time, SCB dosage and SCB particle size. Langmuir, Freundlich, Tempkin and D–R isothermal models have been employed to analyze the adsorption equilibrium data. It was found that the adsorption of the dye fits well with the D–R model. The adsorption kinetics was also done applying four kinetic models. The regression equation coefficients refer to fitting the data to the second-order kinetic equation for removal of the DB dye. It is probable that the rate limiting step is a chemical adsorption between the adsorbent and the dye. This chemisorption process is further confirmed from the energy value of 15.1 kJ mol?1 deduced from the D–R isotherm.  相似文献   

8.
SBA-15/PAMAM Nano adsorbent was synthesized by the proficiency of SBA-15 as an original compound, 3-chloropropyltrimethoxysilane as a bridge chemical compound and polyamidoamine dendrimer (PAMAM) in the role of a multifunctional amine end group for adsorption of acid blue 62 (AB62) from aqueous media. The synthesized adsorbent was characterized by transmission electron microscope, field emission scanning electron microscope and Fourier-transform infrared spectroscope. A response surface methodology was employed to evaluate the simple and amalgamated factors of the operating variables subtending initial pH (2–12), adsorbent dosage(0.01–0.03 g), contact time (5–120 min), initial dye concentration (40–600 ppm) and temperature (25–45?°C) to optimize the operating statues of the treatment method. These parameters were altered at five levels pursuant to the central composite design to appraise their effects on AB62 removal through analysis of variance. Analysis of variance represented a high coefficient of definition amount (R2?=?0.9999) and acceptable prediction quadratic polynomial model was concluded which ascertain the suitability of the model and a high correlation among the predicted and empirical amounts. Utmost color removal efficiency was auspicated and empirically accredited. The optimum conditions relied on acquired results for AB62 removal were at an initial pH of 2, adsorbent dosage of 0.03 g SBA-15/PAMAM, dye concentration of 40 mg l?1, time contact of 60 min and temperature of 25?°C.  相似文献   

9.
陈一萍  黄耀裔 《化工环保》2014,34(4):394-397
以碳纳米管(CNTs)和海藻酸钠(SA)为主要原料,制备了环境友好型的复合吸附材料——CNTs-SA。采用TEM和FTIR技术对吸附材料进行了表征,并采用静态法考察了溶液pH、吸附时间、原料固液比(m(CNTs)∶V(SA))等因素对CNTs-SA吸附Cr(Ⅲ)的影响。表征结果显示,CNTs-SA表面引入了更多的—COOH和—CO基团,导致其吸附Cr(Ⅲ)的效果较CNTs有了显著的提高。实验结果表明:在室温、初始Cr(Ⅲ)质量浓度4 000 mg/L、CNTs-SA加入量21 mg/mL、溶液pH 5、吸附时间3 h、m(CNTs)∶V(SA)=1.0 mg/mL的条件下,CNTs-SA对Cr(Ⅲ)的吸附量为120 mg/g,Cr(Ⅲ)去除率为61.5%;Freundlich等温吸附方程适合描述CNTs-SA对Cr(Ⅲ)的吸附行为。  相似文献   

10.
In this study, a novel magnetic Cr(VI) ion imprinted polymer (Cr(VI)-MIIP) was successfully synthesized and used as a selective sorbent for the adsorption of Cr(VI) ions from aqueous solution. It can be synthesized through the combination of an imprinting polymer and magnetic nanoparticles. The high selectivity achieved using MIIP is due to the specific recognition cavities for Cr(VI) ions created in Cr(VI)-MIIP. Also, the magnetic properties that could be obtained using magnetic nanoparticles, helps to separate adsorbent with an external magnetic field without either additional centrifugation or filtration procedures. The magnetic Fe3O4 nanoparticles (MNPs) were synthesized using an improved co-precipitation method and modified with tetraethylorthosilicate (TEOS) before imprinting. The magnetic Cr(VI) ion imprinted polymer was prepared through precipitation copolymerization of 4-vinylpyridine as the complexing monomer, 2-hydroxyethyl methacrylate as a co-monomer, the Cr6+ anion as a template, and ethylene glycol dimethacrylate (EGDMA) as a cross-linker in the presence of modified magnetite nanoparticles. This novel synthesized sorbent was characterized using different techniques. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity, and reusability. The results showed that the maximum adsorption capacity was 39.3 mg g?1, which was observed at pH 3 and at 25?°C. The equilibrium time was 20 min, and the amount of adsorbent which gave the maximum adsorption capacity was 1.7 g L?1. Isotherm studies showed that the adsorption equilibrium data were fitted well with the Langmuir adsorption isotherm model and the theoretical maximum adsorption capacity was 44.86 mg g?1. The selectivity studies indicated that the synthesized sorbent had a high single selectivity sorption for the Cr(VI) ions in the presence of competing ions. Thermodynamic studies revealed that the adsorption process was exothermic (\(\Delta H\)?<?0) and spontaneous (\(\Delta G\)?<?0). In addition, the spent MIIP can be regenerated up to five cycles without a significant decrease in adsorption capacity.  相似文献   

11.
In this research, a novel thermosensitive nanosphere polymer (TNP) was synthesized by copolymerization of N-isopropylacrylamide with 3-allyloxy-1,2-propanediol for the removal of diazinon from water. The characterization of the synthesized adsorbent has been performed by Fourier transform infrared spectrometer, scanning electron microscopy and elemental analysis. Batch adsorption method was performed to investigate the influences of various parameters like pH, temperature and contact time on the adsorption of diazinon. The equilibrium adsorption data of diazinon by TNP was studied by Langmuir, Freundlich, Temkin and Redlich–Peterson model. According to equilibrium adsorption results, the Langmuir, Freundlich and Temkin constants were evaluated to be 0.912 (L/mg), 7.916 (mg/g) (L/mg)1/n and 2.494 respectively at pH 7 and room temperature. Based on Redlich–Peterson model analysis, the equilibrium data for the adsorption of diazinon was conformed well to the Langmuir isotherm model. This method was successfully applied for removal of diazinon from environmental samples. Moreover, in reusing of TNP, the sorption capacity was maintained without any significant change after 10 cycles of sorption–desorption process.  相似文献   

12.
Sunflower residue, an agricultural waste material for the removal of lead (Pb) and cadmium (Cd) from aqueous solutions were investigated using a batch method. Adsorbent was prepared by washing sunflower residue with deionized water until the effluent was colorless. Batch mode experiments were carried out as a function of solution pH, adsorbent dosage, initial concentration and contact time. The results indicated that the adsorbent showed good sorption potential and maximum metal removal was observed at pH 5. Within 150 min of operation about 97 and 87 % of Pb and Cd ions were removed from the solutions, respectively. Lead and Cd sorption curves were well fitted to the modified two-site Langmuir model. The adsorption capacities for Pb and Cd at optimum conditions were 182 and 70 mg g?1, respectively. The kinetics of Pb and Cd adsorption from aqueous solutions were analyzed by fitting the experimental data to a pseudo-second-order kinetic model and the rate constant was found to be 8.42 × 10?2 and 8.95 × 10?2 g mg?1 min?1 for Cd and Pb, respectively. The results revealed that sunflower can adsorb considerable amount of Pb and Cd ions and thus could be an economical method for the removal of Pb and Cd from aqueous systems.  相似文献   

13.
A novel sodium alginate-grafted poly(acrylic acid)/graphene oxide (NaAlg-g-PAA/GO) composite hydrogel was prepared via ultraviolet irradiation, and characterized by infrared spectroscopy spectrometer. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. It was employed to adsorb NH4+ from aqueous solution and used as slow-release nitrogen fertilizers (SNFs). Result indicated that the adsorption process for NH4+ reached equilibrium within 50 min, with the adsorption capacity of 6.6 mmol g?1 even if 30 wt% GO was incorporated. The results of adsorption kinetic and isotherm were well described by the pseudo-second-order and Freundlich model. The thermodynamics analysis showed the adsorption process was spontaneous. The study indicated excellent water-holding ratio of soil with 2 wt% SNFs was 81.2%, and nitrogen release was up to 55.1% within 40 days in soil. Overall, NaAlg-g-PAA/GO could be considered as an efficient adsorbent for the recovery of nitrogen with the agronomic reuse as a fertilizer.  相似文献   

14.
Polyaniline (PANI) and polyaniline/Gördes-clinoptilolite (PANI/GC) composite materials were synthesized by the chemical oxidative polymerization technique and used in the adsorption of Acid Violet 90 metal-complex dye (AV 90). The samples were characterized by X-ray diffractions, nitrogen adsorption–desorption isotherms, scanning electron microscopes and Fourier transform infrared. The effect of initial pH (2–8), sorbent dosage (0.5–4.0 g/L) and initial dye concentrations (50400 mg/L) on adsorption onto PANI and PANI/GC were examined in a batch system. Langmuir, Freundlich and Temkin isotherm models were used to investigate the adsorption mechanism of AV 90 on PANI and PANI/GC. Langmuir isotherm model for PANI/GC and Freundlich isotherm model for PANI were fitted well with the experimental data. The highest dye uptake capacities were obtained with Langmuir isotherm model as 153.85 mg/g and 72.46 mg/g for PANI and PANI/GC, respectively. In order to determine the adsorption kinetics, pseudo first-order and second-order kinetic models were studied. As a result, the adsorption of AV 90 dye on PANI and PANI/GC was better identified with Pseudo second-order kinetic model than the first one.  相似文献   

15.
The selective modification of sodium montmorillonite (Na+-Mt) surface with polyionene followed by poly (succinimde-co-aspartate) has been considered. Na+-Mt was allowed to react with well characterized polyionene in two fold excess. The resulting polyionene/Mt (IC) was further modified with poly (succinimide-co-aspartate) through an ion exchange process. The obtained polyaspartate/Mt (IPS) composite was characterized by elemental analysis, X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and BET surface analyzer. The adsorption efficiency of IPS composite was investigated for the removal of Pb(II) and Cd(II) from aqueous solution under different experimental conditions including initial metal ions concentration, temperature and single and binary mixture systems of metal ions. The experimental data were analyzed by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. Langmuir model reveals that the monolayer adsorption capacity of IPS was 92.59 and 67.57 mg/g for Pb(II) and Cd(II), respectively. The modification of parent Na+-Mt enhanced their adsorption capacity by about 87.91 and 29.84% for Pb(II) and Cd(II), respectively, due to inclusion of extra active sites of polyaspartate. The mean sorption energy, E calculated from Dubinin–Radushkevich isotherm were 2.75 and 1.98 kJ/mol for the adsorption of Pb(II) and Cd(II), respectively, indicating physical adsorption process. Also, The thermodynamic parameters were calculated and indicated that the adsorption was spontaneous and exothermic process. The mechanism of cation exchange and complexation of metal ions was suggested. IPS composite has a considerable potential for the removal of heavy metal ions from aqueous solution and wastewater stream.  相似文献   

16.
Chitosan (Chi) beads were conjugated with three different amino acids [namely, glutamic acid (GLU), methionine (MET), and taurine (TAU)] aiming to increase the divalent copper ions uptake in aqueous media. Scanning Electron Microscopy evidenced the development of a large porous structure after amino acid functionalization, associated with the increase in a number of amino groups in the polymer backbone. X-Ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectra analyses were also employed to assess the conjugation of these three different amino acids in chitosan backbone. Adsorption experiments were conducted in a batch process, at 298 K, and kinetic data indicated a slightly better fitting for the pseudo-first-order model when compared to pseudo-second order. Intraparticle diffusion model suggested a three-step mechanism for Cu(II) adsorption kinetics, limited by the third step, the intraparticle diffusion. The isotherm data fitting to the traditional Langmuir and Freundlich models indicated a better fit for the former case. The amino acid conjugation resulted in the increase of the maximum adsorption capacity for Cu(II) from 1.30 mmol g?1 prior to amino acid conjugation to values as high as 2.31 mmol g?1, 2.40 mmol g?1 and 2.68 mmol g?1 for Chi–TAU, Chi–GLU, and Chi–MET, respectively. These results are attributed to the introduction of additional amino groups and new carboxylate and amino acid residues into the chitosan backbone, which might also be explored for amino acid demanding applications.  相似文献   

17.
In the present work ability of the two novel adsorbents, sulphonyl and carboxyl functionalized stearyl alcohol-grafted epichlorohydrin, SA-g-E-SO3H, SA-g-E-COOH; to remove lysozyme (LYZ) from aqueous solution was assessed. The adsorbent characterization was done using FTIR, XRD, SEM and TGA analyses. The adsorption efficiency was influenced by solution pH and the optimum operating pH was found to be 4.0 for SA-g-E-SO3H and 5.0 for SA-g-E-COOH and their adsorption efficiency was evaluated using the various isotherm and kinetics models. The Sips isotherm model and pseudo-second-order kinetic model were found to be the best for describing the equilibrium and kinetic behaviors of the adsorption process. Batch adsorption/desorption studies in acidic medium, for over six cycles showed excellent regeneration capability of the adsorbents and could lead to the development of viable and promising technology for the adsorptive recovery of LYZ from aqueous solutions. The efficiency of the adsorbents for the LYZ adsorption was verified using egg white. The result obtained from this study revealed that adsorption ability of 25 mg of SA-g-E-COOH is 98.4 % which is more than that of SA-g-E-SO3H (96.2 %). The efficiency of SA-g-E-SO3H to remove LYZ from aqueous solution was found to be higher compared to SA-g-E-COOH.  相似文献   

18.
刘保锋  洪军  王丽  童晨 《化工环保》2017,36(5):543-547
采用强酸性阳离子交换树脂D001作为吸附剂吸附脱除水溶液中的罗丹明B(Rh B)。SEM和FTIR表征结果显示:D001树脂表面存在孔隙,可增加树脂的比表面积;树脂表面的磺酸基团可通过与阳离子染料Rh B络合而将其吸附。实验结果表明:Langmuir等温吸附模型能更好地描述树脂对Rh B的吸附规律,升高温度有利于树脂吸附Rh B;吸附过程符合Lagergren准一级动力学方程,初始Rh B质量浓度为20 mg/L时吸附活化能为7.06 k J/mol;树脂对Rh B的吸附是一个自发的、吸热的、熵推动的过程;颗粒扩散为吸附过程的控制步骤;树脂具有良好的重复使用性能。  相似文献   

19.
A series of nanaoscale aramid-based adsorbents were prepared by the functionalization of poly (p-phenylene terephthalamide) (PPTA) with different content of ethylenediamine (EDA). Their structures were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis. Metal ions, including Hg2+, Pb2+, Ag+, Cu2+, Cd2+, and Ni2+ were chosen as the models to explore the binding behaviors of PPTA–ECH–EDA in aqueous medium. Results showed that PPTA–ECH–EDA exhibited higher adsorption capacity for Hg2+ due to their nanoscale structures. In particular, the adsorption rate was so high that equilibrium was achieved within 15 min for Hg2+. The adsorption of Hg2+ on PPTA–ECH–EDA followed the pseudo second-order model well. Langmuir and Freundlich models were employed to fit the isothermal adsorption, and the results revealed that Freundlich isotherm was a better model to predict the experimental data. The adsorption mechanism was revealed by X-ray photoelectron spectroscopy. It is preconceived that PPTA–ECH–EDA could be used as an effective adsorbent for fast removal of heavy ions from wastewater.  相似文献   

20.
The crosslinking of chitosan with cyanoguanidine shows some advantages, such as the improved the stability in acid solutions and the decrease of adsorbent cost. In this work, cyanoguanidine-crosslinked chitosan and pure chitosan were prepared to apply in the adsorption of Food Yellow 4 (FY4) and Food Blue 2 (FB2), in single and binary systems. Effects of pH and deacetylation degree (DD) of chitosan in adsorption were evaluated. The adsorbents were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The kinetic data were analyzed by pseudo-first order, pseudo-second order and Avrami models. The conditions of pH 3 and DD 95% were the more suitable to reach the highest adsorption capacities in all experimental assays. Under these conditions, the adsorption capacities for FY4 were approximately of 392 and 200 mg g?1 and, for FB2 were approximately of 370 and 184 mg g?1, respectively, in the single and binary systems. The Avrami model was suitable to represent the kinetic curves in all conditions, and the highest adsorption capacities were found for FY4 in binary aqueous system, being for the pure chitosan of 229 mg g?1 and crosslinked chitosan of 218 mg g?1. The Langmuir and extended Langmuir models presented a good fit to the equilibrium data in both systems. It was found that, the chitosan crosslinked with cyanoguanidine improved the chemical stability of chitosan as adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号