首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
The study was conducted in Andhra Pradesh, Maharashtra and Uttar Pradesh in India. Hospitals/nursing homes and private medical practitioners in urban as well as rural areas and those from the private as well as the government sector were covered. Information on (a) awareness of bio-medical waste management rules, (b) training undertaken and (c) practices with respect to segregation, use of colour coding, sharps management, access to common waste management facilities and disposal was collected. Awareness of Bio-medical Waste Management Rules was better among hospital staff in comparison with private medical practitioners and awareness was marginally higher among those in urban areas in comparison with those in rural areas. Training gained momentum only after the dead-line for compliance was over. Segregation and use of colour codes revealed gaps, which need correction. About 70% of the healthcare facilities used a needle cutter/destroyer for sharps management. Access to Common Waste Management facilities was low at about 35%. Dumping biomedical waste on the roads outside the hospital is still prevalent and access to Common Waste facilities is still limited. Surveillance, monitoring and penal machinery was found to be deficient and these require strengthening to improve compliance with the Bio-medical Waste Management Rules and to safeguard the health of employees, patients and communities.  相似文献   

2.
Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed.  相似文献   

3.
Tar balls are frequently reported as an indicator of the extent of the impact of a spill incident. The determination of the density of tar balls is basic to the shoreline cleanup assessment team (SCAT) process, and is frequently used by the media as an indication of oil pollution. The processes involved in the evolution of tar balls are not well understood and there is a paucity of literature on the science of tar ball formation.  相似文献   

4.
Journal of Polymers and the Environment - Plastics are widely used by the community, especially as food packaging. In general, plastic raw materials are polymers which have advantages including...  相似文献   

5.
Wet oxidation process is specially effective for wastes with a high organic matter which can not be removed by conventional treatment methods. The digested and raw activated sludges of PAKMAYA yeast factory are treated by wet oxidation process. The liquid-phase organic matter concentration [as total organic carbon (TOC)] was increased by 16.5% in 10 min during the wet oxidation in the presence of Cu as catalyst and H2O2. Lenghtening the period of the wet oxidation, the TOC-concentration was increased by 66% in 120 min. The biodegradability of the sludge after wet oxidation process was also examined. A very little development in the biodegradability was observed, when wet oxidation was applied as pre-treatment to the digested sludge (5% decrease as TOC, in the presence of Cu catalyst and H2O2). However, in the case of digestion of the raw sludge after the application of wet oxidation, the biodegradability increased significantly (approximately 75%, as TOC). Moreover, wet oxidation improved the ability of settling of sludge solids, as well as enhancing the treatment efficiency. Finally, the volume of settled solids was decreased by 80% in the presence of Cu and H2O2. NH3+-N, NO2(-)-N and NO3(-)-N concentrations in the supernatant decreased with the wet oxidation. pH value of the sludge increased from 6.6 to 7.8-8.0. Since stable sludge was taken from the digester where the nitrification process was progressing, a decrease in the nitrite concentration, with an increase in nitrate was observed in the digestion continuing after the wet oxidation pre-treatment. However, in the raw activated sludge, there was a nitrite formation only in the non-pretreated sludge.  相似文献   

6.
7.
Automotive shredder residue (ASR) is an inevitable by-product of car recycling, i.e. removal of all liquids and hazardous or valuable components from the car and shredding of the hulk, followed by the recovery of steel, iron, and non-ferrous scrap. The European Union (EU) ELV Directive requires attaining higher recovery and recycling rates, resulting in a reduction of the amount of ASR going to landfill. The most plausible methods to achieve a considerable reduction of ASR are as follows: either recycling of separated materials and dismantled bulky parts, such as bumpers, dashboards, cushions, and front and rear windows, or else systematic sorting of the commingled and size-reduced materials, resulting from shredding. After a brief comparison of the actual situation in the EU, the USA, and Japan, the characteristics of actual ASR are reviewed, as well as some of the most prominent efforts made to separate and recycle specific fractions, such as polyolefins, ABS, or polyurethane. Attention is paid to some major players in the EU and to some of the pitfalls that besiege these ventures.  相似文献   

8.
Biodegradable Soy-Based Plastics: Opportunities and Challenges   总被引:3,自引:0,他引:3  
Today's plastics are designed with little consideration for their ultimate disposability or the effect of the resources (feedstocks) used in making them. This has resulted in mounting worldwide concerns over the environmental consequences of such materials when they enter the mainstream after their intended uses. This led to the concept of designing and engineering new biodegradable materials–materials that have the performance characteristics of today's materials but that undergo biodegradation along with other organic waste to soil humic materials. Hence, the production of biodegradable materials from annually renewable agricultural feedstocks has attracted attention in recent years. Agricultural materials such as starches and proteins are biodegradable and environmentally friendly. Soybean is a good candidate for manufacturing a large number of chemicals, including biodegradable plastics, as it is abundantly available and cheap. Soy protein concentrate, isolate, or flakes could be compounded with synthetic biodegradable plastics such as polycaprolactone or poly (lactic acid) to make molded products or edible films or shopping bags and make the environment cleaner and greener.  相似文献   

9.
Recycling of WEEE plastics: a review   总被引:1,自引:0,他引:1  
Electric and electronic equipment (EEE) is swiftly growing in volume, level of sophistication, and diversity. Also, it evolves briskly, moved by innovation and technical change, and draws on numerous and at times rare resources. Waste EEE (WEEE) has evolved into an important societal problem. Recycling and treating WEEE implies occupational as well as environmental hazards that are still incompletely documented. Still, second hand EEE has been exported and treated in Africa, China, and India in a precarious informal context. In developed countries, EEE recycling has been sustained by a wide range of initiatives and motives, such as sustainability, creating jobs, and the value of precious or rare metals. Current EU Directives require a steep reduction of WEEE plastics (WEEP) going to landfill. Mechanical, thermal, and feedstock recycling of WEEP are analysed and some options confronted. Plastics recycling should be weighed against the eventual risks related to their hazardous ingredients, mainly legacy brominated fire retardants and heavy metals. Another paper is related to a somewhat similar problem, yet involving a different mix of plastics: recycling plastics from automotive shredder residue.  相似文献   

10.
As the polymer industry evolved, considerable effort was made to understand the degradation processes of high polymers during weathering and ways were found to inhibit or at least retard their chemical modification and loss of their physical and mechanical properties. Weathering is particularly severe for polymers because it combines the photophysical and photochemical effects of ultraviolet radiation with oxidative and hydrolytic effects of the outdoor environment. This article discusses photo-oxidation degradation (the behavior of polymers as a result of outdoor factors) and mainly concentrates on the photo-oxidative degradation of polyolefins and poly(vinyl) chloride. Polymer photostabilization with ultraviolet screeners, quenchers, hydroperoxide decomposers, and radical scavengers is also described.  相似文献   

11.
12.
Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.  相似文献   

13.
The feasibility of using alkyd-acrylic copolymers as a barrier material was studied. Copolymers of tall oil fatty acid or rapeseed oil-based alkyd resin and polyacrylates were synthesized and films of these copolymers were prepared. Nuclear magnetic resonance spectroscopy revealed that after copolymerization the proportion of double bonds in alkyd resin was diminished due to grafting reactions. The mechanical properties, such as strength and flexibility, of the copolymer films were tested, and the performance of the films as water, oil, and oxygen barrier was evaluated. An increased amount of alkyd resin made the films more brittle and increased their oxygen permeability, however, at the same time their hydrophobicity was increased.  相似文献   

14.
In this paper, laboratory- and pilot-scale reactors used for investigation of the composting process are described and their characteristics and application reviewed. Reactor types were categorised by the present authors as fixed-temperature, self-heating, controlled temperature difference and controlled heat flux, depending upon the means of management of heat flux through vessel walls. The review indicated that fixed-temperature reactors have significant applications in studying reaction rates and other phenomena, but may self-heat to higher temperatures during the process. Self-heating laboratory-scale reactors, although inexpensive and uncomplicated, were shown to typically suffer from disproportionately large losses through the walls, even with substantial insulation present. At pilot scale, however, even moderately insulated self-heating reactors are able to reproduce wall losses similar to those reported for full-scale systems, and a simple technique for estimation of insulation requirements for self-heating reactors is presented. In contrast, controlled temperature difference and controlled heat flux laboratory reactors can provide spatial temperature differentials similar to those in full-scale systems, and can simulate full-scale wall losses. Surface area to volume ratios, a significant factor in terms of heat loss through vessel walls, were estimated by the present authors at 5.0-88.0m(2)/m(3) for experimental composting reactors and 0.4-3.8m(2)/m(3) for full-scale systems. Non-thermodynamic factors such as compression, sidewall airflow effects, channelling and mixing may affect simulation performance and are discussed. Further work to investigate wall effects in composting reactors, to obtain more data on horizontal temperature profiles and rates of biological heat production, to incorporate compressive effects into experimental reactors and to investigate experimental systems employing natural ventilation is suggested.  相似文献   

15.
The inadequate and indiscriminate disposal of sugarcane vinasse in soils and water bodies has received much attention since decades ago, due to environmental problems associated to this practice. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from sugar crops (beet and sugarcane), starch crops (corn, wheat, rice, and cassava), or cellulosic material (harvesting crop residues, sugarcane bagasse, and wood). Because of the large quantities of vinasse produced, alternative treatments and uses have been developed, such as recycling of vinasse in fermentation, fertirrigation, concentration by evaporation, and yeast and energy production. This review was aimed at examining the available data on the subject as a contribution to update the information on sugarcane vinasse, from its characteristics and chemical composition to alternatives uses in Brazil: fertirrigation, concentration by evaporation, energy production; the effects on soil physical, chemical and biological properties; its influence on seed germination, its use as biostimulant and environmental contaminant. The low pH, electric conductivity, and chemical elements present in sugarcane vinasse may cause changes in the chemical and physical–chemical properties of soils, rivers, and lakes with frequent discharges over a long period of time, and also have adverse effects on agricultural soils and biota in general. Thus, new studies and green methods need to be developed aiming at sugarcane vinasse recycling and disposal.  相似文献   

16.
The compostability of water-based paint sludge originating from the automotive industry was investigated. Six reactors were operated. Wastewater treatment sludge from the same industry was used as additional substrate, and corncob was used as a bulking agent. The level of paint sludge within the compost mixtures varied between 55 and 85%. All reactors yielded a temperature increase up to thermophilic phase levels (>?40 °C) for a minimum of 5 days, and organic matter and C/N losses were observed. BTEX concentrations decreased during composting. Nickel and tin levels in the final product exceeded the legal compost limits. The calorific value of the compost mixtures increased from 9532 to 18774 kJ/kg at the end of the composting process. It was seen that the process applied in this study can be utilized as a biodrying step before the usage of paint sludge at cement kilns as additional fuel.  相似文献   

17.
There are hundreds of contaminated sites with remediation systems that require evaluation and modification to accomplish cleanup goals. These systems are operating well past projected cleanup schedules, cost more than projected to operate, and may not be as protective of human health and the environment as planned. Remediation process optimization (RPO) is an effective method to assess the progress of a system toward achieving cleanup goals within desired time frames and to make the necessary changes in order to reach those goals. Eight main components to the RPO process are evaluated during a review and an implementation plan of recommended changes to the system is developed. Follow‐up and tracking are essential to successful RPO programs. In this article, the authors present a summary of a recent Technical and Regulatory (TechReg) Guidance Document (Interstate Technology and Regulatory Council [ITRC], 2004) and related Technology Overview Series on Advanced Topics in RPO (ITRC, 2006) in a distilled form. © 2007 Wiley Periodicals, Inc.  相似文献   

18.
Cellulose powder and softwood sawdust were subjected to alkaline degradation under conditions representative of a cementitious environment for periods of 7 and 3 years, respectively. During the first 3 years, sampling was frequent, and data on the degradation of cellulose and production of isosaccharinic acid was used for establishing long-term prediction models. Samples after an additional period of 4 years were compared to the predicted values. The total rate of degradation was measured as the increase in total organic carbon (TOC) in corresponding solutions. A previously published theoretical model of degradation kinetics gave a good approximation of the present experimental data. Peeling-off, stopping, and alkaline hydrolysis reaction rate constants were obtained as model parameters, and the results suggested that the transformation of the glucose end group is the rate-limiting step in the cellulose peeling-off reaction and also determines the pH dependence of that reaction. After 3 years, isosaccharinic (ISA) acid represented 70–85% of all degradation products as quantified by capillary zone electrophoresis. The long-term prediction model indicated that all of the cellulose would be degraded after only 150–550 years. The control sampling after 7 years points toward a lower degradation of cellulose and production of ISA than predicted by the model, reflecting either a degradation of ISA that was faster than the production or a termination of the ISA production.  相似文献   

19.
The U.S. Army Corps of Engineers (US ACE) is responsible for conducting the cleanup of radiological contaminated properties as part of the Formerly Utilized Sites Remedial Action Program. One property is the Rattlesnake Creek (RSC) portion of the Ashland sites. The RSC stream sediments are contaminated with thorium‐230, radium‐226, and uranium. The US ACE is closing RSC using protocols contained within the Multi‐Agency Radiation Survey and Site Investigation Manual (MARSSIM). At RSC, the US ACE developed site‐specific derived concentration guideline level (DCGL) cleanup requirements consistent with the MARSSIM guidance. Because of uncertainty about the distribution of contamination within the creek, the US ACE used the Triad approach to collect data and design remedial actions. Systematic planning helped target the areas of concern, develop a conceptual site model, and identify data gaps to be addressed before remediation plans were finalized. Preremediation sampling and analysis plans were designed to be explicitly consistent with final status survey requirements, allowing data sets to support both excavation planning needs and closure requirements in areas where contamination was not encountered above DCGL standards. Judicious use of real‐ time technologies such as X‐ray fluorescence and gamma walkover surveys minimized expensive off‐ site alpha spectrometry analyses, and at the same time provided the ability to respond to unexpected field conditions. © 2004 Wiley Periodicals, Inc.  相似文献   

20.
Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号