首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
The extracellular poly(-hydroxybutyrate) (PHB) depolymerase of Aspergillus fumigatus Pdf1 was purified by a new, simple, one-step affinity chromatography method using the substrate PHB. The purified enzyme was glycosylated, with the molecular mass of 40 KD, and exhibited a novel self-aggregation behavior by means of hydrophobic interaction that was resolved by Triton X-100 (TX-100) pretreatment of enzyme and also TX-100 incorporation in the native gel. The apparent K m value of purified enzyme for PHB was 119 g/mL and 3-hydroxybutyrate was detected as the main endproduct of PHB hydrolysis. The depolymerase was insensitive to phenylmethyl sulfonyl fluoride (PMSF), sodium azide, ethylenediaminetetraacetic acid (EDTA), and para-chloromercuric benzoic acid (PCMB), but was inactivated by dithioerythritol (DTT) and showed specificity for short chain-length poly(-hydroxyalkanoates) (PHAs) such as PHB, poly(hydroxyvalerate) (PHV), and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Medium-chain-length PHA failed to get hydrolyzed. The enzyme, however, exhibited strong cross reactivity with the Comamonas sp. PHB depolymerase antibodies, but not with PHV depolymerase antibodies of Pseudomonas lemoignei. Southern hybridization and dot blot analysis of A. fumigatus Pdf1 genomic DNA with alkaline phosphatase labeled probes of P. lemoignei PHB and PHV depolymerase genes revealed no homology, although the enzyme hydrolyzed both PHB and PHV.  相似文献   

2.
The bacterial polyester, poly(-hydroxybutyrate-co--hydroxyvalerate) (PHB/V), was cross-linked with 1, 5, 7, 10, 20, and 30 wt% benzoyl peroxide by thermal decomposition reactions. Solvent extractions were carried out to determine the cross-linked fractions of the films. The sol/gel data were used to estimate cross-link densities. Films of PHB/V cross-linked with 10% benzoyl peroxide were placed in contact with purified depolymerase A secreted byP. lemoignei. These samples exhibited weight loss rates which were half that of un-cross-linked PHB/V, but the network was degraded completely by the enzyme. The results of this study suggest that anendo-type enzymatic degradation may occur, in addition to theexo-type activity, which is normally presumed to occur with theP. lemoignei depolymerase system.  相似文献   

3.
Bacteria capable of growing on poly(3-hydroxybutyrate), PHB, as the sole source of carbon and energy were isolated from various soils, lake water, activated sludge, and air. Although all bacteria utilized a wide variety of monomeric substrates for growth, most of the strains were restricted to degrade PHB and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Five strains were also able to decompose a homopolymer of 3-hydroxyvalerate, PHV. Poly(3-hydroxyoctanoate), PHO, was not degraded by any of the isolates. One strain, which was identified asComamonas sp., was selected, and the extracellular depolymerase of this strain was purified from the medium by ammonium sulfate precipitation and by chromatography on DEAE-Sephacel and Butyl-Sepharose 4B. The purified PHB depolymerase was not a glycoprotein. The relative molecular masses of the native enzyme and of the subunits were 45,000 or 44,000, respectively. The purified enzyme hydrolyzed PHB, P(3HB-co-3HV), and—at a very low rate—also PHV. Polyhydroxyalkanoates, PHA, with six or more carbon atoms per monomer or characteristic substrates for lipases were not hydrolyzed. In contrast to the PHB depolymerases ofPseudomonas lemoignei andAlcaligenes faecalis T1, which are sensitive toward phenylmethylsulfonyl fluoride (PMSF) and which hydrolyze PHB mainly to the dimeric and trimeric esters of 3-hydroxybutyrate, the depolymerase ofComamonas sp. was insensitive toward PMSF and hydrolyzed PHB to monomeric 3-hydroxybutyrate indicating a different mechanism of PHB hydrolysis. Furthermore, the pH optimum of the reaction catalyzed by the depolymerase ofComamonas sp. was in the alkaline range at 9.4.  相似文献   

4.
Five extracellular PHB depolymerases of bacteria isolated from various sources were purified to electrophoretic homogeneity and compared with known extracellular PHB depolymerase fromAlcaligenes faecalis T1. The molecular mass of these enzymes were all around 40–50 kDa. Nonionic detergent, diisopropylfluorophosphate and dithiothreitol inhibited the PHB depolymerase activity of all these enzymes. Trypsin abolished PHB depolymerase activity, but not theD-3-hydroxybutyric acid dimer hydrolase activity of all the enzymes. These results showed that the basic properties of these PHB depolymerases resemble those of theA. faecalis T1 enzyme. Analysis ofN-terminal amino acid sequence of the purified enzymes revealed that these enzymes includingA. faecalis T1 enzyme fall into three groups.  相似文献   

5.
An extracellular poly (β-hydroxybutyrate) (PHB) depolymerase was purified from a Penicillium sp. DS9701-09a by centrifugation, ultrafiltration, precipitation and gel filtration chromatography. The specific activity of the purified enzyme was 37.9-folds higher than that of the culture supernatant and the recovery yield was 11.8%. The PHB deploymerase molecular mass was 44.8 kDa from analysis of both Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Matrix-assisted laser desorption-time-of-flight (MALDI-TOF) mass spectrometer. The isoelectric point of 6.7 for the enzyme was determined by a two-dimensional electrophoresis. The optimum enzyme activity was observed at a temperature of 50 °C and pH 5.0. The apparent K m of the enzyme was found to be 1.35 mg/mL. The PHB depolymerase consisted of 16 kinds of normal amino acids. The secondary structure of the enzyme was determined by CD spectrum. α-helix and β-turn were found to be 66% and 34% for the enzyme without ammonium sulphite. Chemical inhibition on the PHB depolymerase activity was examined and EDTA was found to have a significantly inhibitory effect.  相似文献   

6.
A simple method was developed for the preparation of an autoclavable, long-side-chain poly (-hydroxyalkanoate) (LSC-PHA) colloidal suspension, which was used as a substrate for enzymatic degradation and to prepare agar overlay plates for the isolation of microorganisms producing extracellular LSC-PHA depolymerase. Six cultures producing extracellular LSC-PHA depolymerase were isolated from a composted hydrocarbon-contaminated soil. All were pseudomonads or related bacteria. All (with the possible exception ofXanthomonas maltophilia) could produce LSC PHA. Except forX. maltophilia none could hydrolyze poly (-hydroxybutyrate). Screening of sevenPseudomonas strains known to accumulate LSC PHA showed that all were negative for extracellular LSC-PHA depolymerase production. It was concluded that extracellular LSC-PHA depolymerase producers are found mostly in the genusPseudomonas but that they are relatively uncommon.  相似文献   

7.
The synthetic analogue of a bacterially produced polyester, poly(-hydroxybutyrate) (PHB) was synthesized from racemic -butyrolactone using anin situ trimethyl aluminum-water catalyst. The polymer was fractionated into samples differing in molecular weight and isotactic diad content. The latter was closely related to degree of crystallinity. The biodegradation of these fractions were examined by monitoring mass loss over time in the presence of anAlcaligenes faecalis T1 extracellular bacterial poly(-hydroxybutyrate) depolymerase. The fraction with high isotactic diad tacticity content showed little or no degradation over a 50 hour incubation period, whereas the fraction of intermediate isotactic diad content degraded in a continuous steady fashion at a rate that was less than that for bacterial PHB. The low isotactic diad fraction underwent a rapid initial degradation, followed by no further mass loss. The presence of stereoblocks in the polymer structure of the various fractions was an influence on the degree of susceptibility towards degradation and is related to sample crystallinity.  相似文献   

8.
Four polyhydroxyalkanoate (PHA) depolymerases were purified from the culture fluid ofPseudomonas lemoignei: poly(3-hydroxybutyrate) (PHB), depolymerase A (M r , 55,000), and PHB depolymerase B (M r , 67,000) were specific for PHB and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) as substrates. The third depolymerase additionally hydrolyzed poly(3-hydroxyvalerate) (PHV) at high rates (PHV depolymerase;M r , 54,000). The N-terminal amino acid sequences of the three purified proteins, of a fourth partially purified depolymerase (PHB depolymerase C), and of the PHB depolymerases ofComamonas sp. were determined. Four PHA depolymerase genes ofP. lemoignei (phaZ1,phaZ2,phaZ3, andphaZ4) have been cloned inEscherichia coli, and the nucleotide sequence ofphaZ1 has been determined recently (D. Jendrossek, B. Müller, and H. G. Schlegel,Eur. J. Biochem. 218, 701–710, 1993). In this study the nucleotide sequences ofphaZ2 andphaZ3 were determined.PhaZ1,phaZ2, andphaZ4 were identified to encode PHB depolymerase C, PHB depolymerase B, and PHV depolymerase, respectively.PhaZ3 coded for a novel PHB depolymerase ofP. lemoignei, named PHB depolymerase D. None of the four genes harbored the PHB depolymerase A gene, which is predicted to be encoded by a fifth depolymerase gene ofP. lemoignei (phaZ5) and which has not been cloned yet. The deduced amino acid sequences ofphaZ1–phaZ3 revealed high homologies to each other (68–72%) and medium homologies to the PHB depolymerase gene ofAlcaligenes faecalis T1 (25–34%). Typical leader peptide amino acid sequences, lipase consensus sequences (Gly-Xaa-Ser-Xaa-Gly), and unusually high proportions of threonine near the C terminus were found in PhaZ1, PhaZ2, and PhaZ3. Considering the biochemical data of the purified proteins and the amino acid sequences, PHA depolymerases ofP. lemoignei are most probably serine hydrolases containing a catalytical triad of Asp, His, and Ser similar to that of lipases. A comparison of biochemical and genetic data of various eubacterial and one eukaryotic PHA depolymerases is provided also.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.  相似文献   

9.
To determine the properties of enzymes from bacteria that degrade polypropiolactone (PPL), we isolated 13 PPL-degrading bacteria from pond water, river water, and soil. Nine of these strains were identified as Acidovorax sp., three as Variovorax paradoxus, and one as Sphingomonas paucimobilis. All the isolates also degraded poly(3-hydroxybutyrate) (PHB). A PPL-degrading enzyme was purified to electrophoretical homogeneity from one of these bacteria, designated Acidovorax sp. TP4. The purified enzyme also degraded PHB. The molecular weight of the enzyme was estimated as about 50,000. The enzyme activity was inhibited by diisopropylfluorophosphate, dithiothreitol, and Triton X-100. The structural gene of the depolymerase was cloned in Escherichia coli. The nucleotide sequence of the cloned DNA fragment contained an open reading frame (1476 bp) specifying a protein with a deduced molecular weight of 50,961 (491 amino acids). The deduced overall sequence was very similar to that of a PHB depolymerase of Comamonas acidovorans YM1609. From these results it was concluded that the isolated PPL-degrading enzyme belongs to the class of PHB depolymerases. A conserved amino acid sequence, Gly-X1-Ser-X2-Gly (lipase box), was found at the N-terminal side of the amino acid sequence. Site-directed mutagenesis of the TP4 enzyme confirmed that 20Ser in the lipase box was essential for the enzyme activity. This is the first report of the isolation a PHB depolymerase from Acidovorax.  相似文献   

10.
An extracellular poly(3-hydroxybutyrate) (PHB) depolymerase was purified fromAureobacterium saperdae cultural medium by using hydrophobic interaction chromatography. The isolated enzyme was composed of a single polypeptide chain with a molecular mass of 42.7 kDa as determined by SDS-PAGE and by native gel filtration on TSK-HW-55S. The enzyme was not a glycoprotein. Its optimum activity occurred at pH 8.0 and it showed a broad pH stability, ranging from pH 3 to pH 11.N-Bromosuccinamide and 2-hydroxy-5-nitrobenzyl bromide completely inactivated the enzyme, suggesting the involvement of tryptophan residues at the active site of the protein. The enzyme was very sensitive to diisopropyl fluorophosphate and diazo-dl-norleucine methyl ester, showing the importance of serine and carboxyl groups. The modification of cysteine residues byp-hydroxy mercuricbenzoate did not cause a loss of activity, whereas dithiothreitol rapidly inactivated the enzyme, revealing the presence of disulfide bonds.A saperdae depolymerase acted on the surface layer of PHB films and the degradation proceeded by surface erosion releasing monomers and dimers of 3-hydroxybutric acid. The degradation of PHB films byA. saperdae depolymerase was partially inhibited in the presence of excess amounts of enzyme. This phenomenon, already observed by Mukaiet al. with poly(hydroxyalkanoates) depolymerases fromAlcaligenes faecalis, Pseudomonas pickettii, andComamonas testosteroni, was analyzed according to the kinetic model proposed by these authors. The experimental data evidenced a general agreement with the kinetic model, although higher initial degradation rates were found withA. saperdae depolymerase.  相似文献   

11.
The apparent biodegradability and biocompatibility of the microbially produced polyester, poly(-hydroxybutyrate) (PHB), has been the focus of much research by a number of authors with regard to its potential for use in packaging and medical implantation devices. PHB has recently been produced by gel-spinning into a novel form, with one possible application being as a wound scaffolding device, designed to support and protect a wound against further damage while promoting healing by encouraging cellular growth on and within the device from the wound surface. This new nonwoven form combines a large volume with a low mass, has an appearance similar to that of cotton wool, and has been called wool because of this similarity. The hydrolytic degradation of this wool was investigated in an accelerated model of pH 10.6 and temperature 70°C. It was determined that the PHB wool gradually collapsed during degradation. The surface area-to-volume ratio was concluded to be a primary influencing factor. Degradation was characterized by a reduction in the glass transition temperatures and melting points and a fusion enthalpy peak of maximum crystallinity, (88%), which coincided with the point of matrix collapse.  相似文献   

12.
Monitoring of the occurrence of sandstorms and dustfallphenomena from 1997 to 2000 was carried out. We refer tosandstorms, duststorms and blowing sand as the phenomenaoccurring in the source region, while significant dustfall is thephenomenon that occur in the sink area. It was noted that while the sandstorms in deserts and loess in NW-N China and Mongolia occurred any time during the year while severe sandstorms occurred frequently from March to May after the springthaw. The wind erosion in the source region usually occurred withwind speeds greater than 8 ms-1. However, severe sandstorm phenomenon occurred with wind greater than 15 ms-1 for at least 3 hr or more. In the source regions, sandstorms occurred over60–120 days per year. In Mongolia, the observation of thenumber of sandstorm days decreased due to the increase in rainy days.When a dust cloud from a desert reached the sink region,significant dustfall in the Korean Peninsula occurred due tothe lack of strong winds. We defined the episode ofsignificant dustfall (SD) with the following values: TSP250, PM10 190 g m-3 and visibility 6.5 km or less. In Korea, 8–12 episodes of SD occurred per yearwith 12 to 22 SD days. The maximum concentrations of TSP recorded were 989–1396 g m-3 with PM10 values of 861–996 g m-3 and with the lowestvisibility of 1.4–1.6 km.  相似文献   

13.
The distribution of degading microorganisms of high molecular weight poly(-propiolactone) (PPL), whose individual structural units are similar to those of poly(-hydroxybutyrate) (PHB) and poly(€-caprolactone) (PCL), was examined. Despite the fact that PPL is a chemosynthetic polymer, many kinds of PPL-degrading microorganisms were found to be distributed as resident populations widely in natural environments. A total of 77 strains of PPL-degrading microorganisms was isolated. From standard physiological and biochemical tests, at least 41 strains were referred to as Bacillus species. Microbial degradation of fibrous PPL proceeded rapidly in some enrichment cultures but was not as complete as that of PHB. Most of the isolated PPL-degrading microorganisms were determined to be PCL degraders and/or PHB degraders. Therefore, it can be assumed that mostly PPL is recognized by the microorganisms as PHB or another natural substrate of the same type as which PCL is regarded. Microbial degradation of PPL was confirmed by some Bacillus strains from type culture collections. The similarity of microbial degradation between PPL and PCL was found to be very close.  相似文献   

14.
A strain of Aspergillus fumigatus, which was observed to rapidly degrade poly-3-hydroxybutyrate (PHB) in a leaf compost, was found to secrete an extracellular hydrolase when grown on PHB as the sole carbon source. Isolation and characterization of the PHB hydrolase (depolymerase) from this fungus revealed that the enzyme had a molecular weight of 57 kDa, an isoelectric point of 7.2, and a PHB hydrolysis activity maxima which occurred at 70°C and pH 8.0. Affinity labeling experiments suggested that this fungal hydrolase is a type of serine esterase. The cyclic trimers of 3-hydroxybutyrate were found to reversibly inhibit the enzymes.  相似文献   

15.
Predominantly syndiotactic poly(-hydroxybutyrate), syn-PHB, of variable syndioregularity (syndyad fractions 0.59, 0.62, 0.64, and 0.71) and molecular weight was prepared by the dibutyltin dimethoxide catalyzed ring opening of racemic-butyrolactone (BL). The crystallization behavior of the syn-PHB polymers was investigated by DSC and X-ray diffraction analyses. DSC of films after melting and annealing showed at least one, and often two distinct melting transitions occuring over a broad (often 40°C) temperature range. These results indicate that syn-PHB chain segments of variable syndioregularity form crystalline regions with very different thermodynamic stabilities. Maximum degrees of crystallinity for melt annealed 0.64- and 0.71-syn-PHB was observed at an annealing temperature (T c ) of 30°C. AtT c values at 45°C and higher, crystallization of relatively lower syndioregular chain segments was apparently excluded to variable degrees dependent onT c and sample syndiotactic dyad content. After crystallization of syn-PHB samples at elevated temperatures, ambient temperature annealing resulted in an observed lower temperature melting transition at 50°C. This result showed little to no dependence on syn-PHB syndio-regularity andT c . Both solution precipitated 0.62-syn-PHB and 0.71-syn-PHB have WAXS patterns with poorly resolved crystalline reflections superimposed on amorphous haloes indicating low levels of crystallinity (17% and 25%, respectively) and poorly formed crystals. Isothermal crystallization monitored by DSC showed that the syn- and natural origin PHB showed fastest crystallization rates at temperatures between 50°C and 70°C and 60°C and 90°C, respectively. From the dependence of the higher melting transition onT c it was determined that the equilibrium melting temperatures for 0.62-syn-PHB (M n =83,700 g/mol) and a 0.64-syn-PHB (M n =11,900 g/mol) were 157 and 154°C, respectively. An Avrami analysis of syn-PHB yielded results similar to that found for natural origin PHB indicating that crystal growth occurs by a two-dimensional mechanism.Guest Editor: Dr. Graham Swift, Rohm & Haas.  相似文献   

16.
The biodegradability of poly--hydroxybutyrate (PHB), poly--hydroxybutyrate-co-valerate (PHB-V) and poly--caprolactone (PCL) were examined following thermal aging in an oven for 192, 425 and 600 h. Different temperatures, 100, 120 and 140°C for PHB and PHB-V and 30, 40 and 50oC for PCL were used to assess the influence of this parameter on biodegradation. The biodegradability tests were done in soil compostage at pH 11.0 and involved measuring the residual mass of polymer. Thermal analysis of the polymers was done using a differential scanning calorimeter (DSC). The melting temperature and crystallinity were also determined. Thermal ageing increased the biodegradability only for PHB at 120 and 140oC, and there was no correlation between crystallinity and the biodegradation of the polymers.  相似文献   

17.
To assess the capacity of the natural environment for degrading plastics, the populations of poly(-hydroxybutyrate)(PHB)-and poly(-caprolactone)(PCL)-degrading aerobic microorganisms and their ratios to the total number of microorganisms in soil samples were estimated by the plate count method with agar medium containing emulsified PHB or PCL. The numbers of the degrading microorganisms were determined by counting colonies that formed clear zones on the plate. It was found that PHB- and PCL-degrading (depolymerizing) microorganisms are distributed over many kinds of material, including landfill leachate, compost, sewage sludge, forest soil, farm soil, paddy soil, weed field soil, roadside sand, and pond sediment. Of total colony counts, the percentages of PHB and PCL degrading microorganisms were 0.2–11.4 and 0.8–11.0%, respectively. The results suggest that many kinds of degrading microorganisms are present in each environment and that specific consortia differing in biodegradation capacity are constructed.  相似文献   

18.
An extracellular poly(3-hydroxybutyrate) (PHB) depolymerase produced by a thermotolerant fungal soil isolate, Aspergillus fumigatus 202, was purified and characterized. Maximum PHB depolymerase production was obtained at the end of 48 h with initial medium pH 7.0 and 45 °C in Bushnell Haas Minerals medium containing PHB as sole source of carbon. The PHB depolymerase was purified using size exclusion chromatography to a fold purification of 20.62 and 61.62% yield. SDS-PAGE and isoelectric focusing revealed the molecular weight and pI of the purified enzyme as 63,744 Da and 4.2, respectively. N-terminal amino acid sequence of purified enzyme was HAXDAYLVK. This non-glycosylated enzyme was most active at pH 9.0 and 45 °C. Purified enzyme was inactivated by N-bromosuccinimide and dithiothreitol suggesting the involvement of tryptophan residues and disulfide bonds at its active site. Nonionic detergents like Tween 20, Tween 80 and Triton X-100 inhibited the enzyme activity. Ions like Ca+2 and Mg+2 (5 mM) increased the enzyme activity 1.5 times. Fe+2 effectively inhibited the enzyme activity to 88% whereas Hg+2 completely inhibited the enzyme.  相似文献   

19.
A block copolymer {P[(R,S)-HB-b-EG]} of atactic poly[(R,S)-3-hydroxybutyrate] {P[(R,S)-HB]} and poly(ethylene glycol) (PEG) was prepared by the ring-opening polymerization of -butyrolactone in the presence of a macroinitiator (PEG/ZnEt2/H2O) which had been produced by the reaction of ,-dihydroxy PEG ( n=3000) with ZnEt2/H2O (1/0.6) catalyst. The block copolymer ( n=10,500, w/ n=1.2) was an A-B-A triblock copolymer comprising atactic P[(R,S)-HB] (A) and PEG (B) segments. The miscibility, physical properties, and biodegradability of binary blends of microbial poly[(R)-3-hydroxybutyrate] {P[(R)-HB]} with the block copolymer P[(R,S)-HB-b-EG] has been studied. The glass-transition temperature (T g) data showed that the P[(R)-HB]/P[(R,S)-HB-b-EG] blend was miscible in the amorphous state. The P[(R)-HB] film became flexible and tough by means of blending with P[(R,S)-HB-b-EG] block copolymer. The enzymatic degradation of blend films was carried out at 37°C and pH 7.4 in a 0.1M phosphate solution of an extracellular PHB depolymerase fromAlcaligenes faecalis. The enzymatic degradation took place solely on the surface of the blend films.  相似文献   

20.
The amino acid sequence of a peptide containing an active serine was examined with poly(3-hydroxybutyrate) (PHB) depolymerase ofAlcaligenes faecalis T1. The sequence Cys-Asn-Ala-Trp-Ala-Gly-Ser-Asn-Ala-Gly-Lys was obtained. This amino acid sequence around the active serine does not fit any reported sequence of other esterases and proteases. On the other hand, a segment of the amino acid sequence of PHB depolymerase ofA. faecalis was homologous to the type III sequence of fibronectin. Similar sequences have been reported in some type of bacterial chitinase and cellulases, and PHB depolymerase seems to have an overall similarity to these bacterial extracellular hydrolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号