首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(lactic acid) is one of the most promising biobased and biodegradable polymers for food packaging, an application which requires good mechanical and barrier properties. In order to improve the mechanical properties, in particular the flexibility, PLA plasticization is required. However, plasticization induces generally a decrease in the barrier properties. Acetyl tributyl citrate (ATBC) and poly(ethylene glycol) 300 (PEG), highly recommended as plasticizers for PLA, were added up to 17 wt% in P(D,L)LA. In the case of PEG, a phase separation was observed for plasticizer contents higher than 5 wt%. Contrary to PEG, the Tg decrease due to ATBC addition, modelled with Fox’s law, and the absence of phase separation, up to 17 wt% of plasticizer, confirm the miscibility of PLA and ATBC. Contents equal or higher than 13 wt% of ATBC yielded a substantial improvement of the elongation at break, becoming higher than 300%. The effect of PLA plasticization on the barrier properties was assessed by different molecules, with increasing interaction with the formulated material, such as helium, an inert gas, and oxygen and water vapour. In comparison to the neat sample, barrier properties against helium were maintained when PLA was plasticized with up to 17 wt% of ATBC. The oxygen permeability coefficient and the water vapour transmission rate doubled for mixtures with 17 wt% ATBC in PLA, but increased five-fold in the PEG plasticized samples. This result is most likely caused by increased solubility of oxygen and water in the PEG phase due to their mutual miscibility. To conclude, ATBC increases efficiently the elongation at break of PLA while maintaining the permeability coefficient of helium and keeping the barrier properties against oxygen and water vapour in the same order of magnitude.  相似文献   

2.
Multilayer films exhibit excellent properties for food packaging. However, existing products are not biodegradable. Conventional plastics, manufactured from fossil fuels, not only consume non-renewable and finite resources, but also impact heavily on waste disposal. For this reason, a new multilayer film has been developed in the Multibio Project for the production of food packaging. In this paper, the environmental impacts of the new biodegradable multilayer film—based on modified starch and polylactic acid (PLA)—and those of the conventional multilayer film—based on PP and PA6—are quantified in the categories of climate change, fossil fuel depletion, acidification and eutrophication. Conventional multilayer film has a 90% higher impact than the Multibio multilayer film. The main difference between the LCA presented and the cited literature is the inventory data obtained in the phase of polymer processing to obtain multilayer film, and the assessment of the disposal phase of the multilayer film wastes.  相似文献   

3.
This paper presents a life cycle assessment (LCA) comparing three forms of poly(lactic acid) (PLA) disposal: mechanical recycling, chemical recycling and composting. The LCA data was taken from lab scale experiments for composting and hydrolysis steps. Polymerization data in chemical recycling was obtained from computer simulation. Mechanical recycling data from lab scale were combined with the data from a plastics commercial mechanical recycling plant. The analysis considered two different product systems based on the input of the recycled PLA in the product system. Considering the categories: climate change, human toxicity and fossil depletion, the LCA showed that mechanical recycling presented the lowest environmental impact, followed by chemical recycling and composting. Among the forms of recycling, the most important input was the electricity consumption.  相似文献   

4.
In this study, poly(l-lactide) (PLA) films were fabricated by melt processing and the plasticizing effect of hexadecyl lactate (HL) (0, 5, 7.5, 10, and 12.5 wt% on PLA were investigated by scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, tensile, transparency, and water vapor permeability tests. The SEM analysis revealed that PLA with 10 wt% HL appeared uniform with extra small bumps, confirmed the interaction between PLA and HL. The thermal analysis revealed a glass transition temperature of 57.4 °C for neat PLA film, but the addition of HL elicited a decrease in the temperature of the peak (43.8 °C). The incorporation of plasticizer into PLA resulted in the increase of elongation at break, as well as the decrease of tensile strength and tensile modulus. Even though a decrease in transparency was recorded, the PLA/HL blend films appeared transparent by visually observation. The water vapor permeability of PLA/HL blend films increased with the increase of HL. The PLA/HL blend films could effectively extend the shelf-life of fresh-cut pears as the commercial low density polyethylene films. The results indicated that the properties of PLA films can be modified with the addition of HL and PLA/HL blend films could serve as an alternative as food packaging materials to reduce environmental problems associated with synthetic packaging films.  相似文献   

5.
Fossil energy depletion and growing environmental concerns have brought up increasing interest in bio-based eco-efficient and high technology materials. Among them, starch nanocrystals (SNC) consist of crystalline nano-platelets produced from the hydrolysis of starch and mainly used as nano-fillers in polymeric matrix. New applications have brought up the need for scaling-up the SNC preparation process. However, for this new bio-based nano-material to be sustainable, its preparation and processing should have limited impacts on the environment. Thus, together with analyzing and making recommendations for the scaling-up of SNC production process, it is worth identifying “environmentally sensitive” steps using life cycle analysis (LCA). To that purpose, different scenarios have been proposed and compared according to different environmental impacts. Also, a comparison to its main competitor, i.e. organically modified nanoclay (OMMT), is proposed. From a LCA point of view, SNC preparation requires less energy than OMMT extraction, but global warming and acidification indicators were higher than for OMMT. However, SNC have the added advantages to be renewable and biodegradable contrary to OMMT which contribute to non-renewable energy and mineral depletion. Thus, used as filler, SNC have a positive impact on the end of life of the filled material. From these observations, recommendations for the scaling-up of the SNC preparation process are made and deal mainly with the use of land and water.  相似文献   

6.
This research focused on life cycle assessment (LCA) and techno-economic analysis (TEA) comparisons of polylactic acid (PLA) composites, in order to compare organic to inorganic fillers. Organic fillers included DDGS, flax, hemp, rice husks, and wood, and were compared against inorganic fillers (glass and talc) for PLA-based composites. This study utilized LCAI and TEA methodology to estimate and quantify costs, emissions, and energy intensity (EI) associated with material acquisition, processing, transport, and end-of-life treatment used during plastic composite production. Emission categories analyzed include global warming potential (GWP), air acidification (AA), air eutrophication (AE), water eutrophication (WE), ozone layer depletion (OLD), air smog (AS), high carcinogens (HC), and high non-carcinogens (HNC). To achieve a “Cradle-to-Grave” perspective, two models were meshed, the plastic comparator (PC) and EIO-LCA (EIO), to simulate the EI and emissions associated over the entire life cycle. Based assumptions used, this research has shown that utilizing land fill end-of-life treatment and glass filler composite was the most environmentally harmful option, and maintained the highest economic impact, for all impact categories during PLA composite production. Alternatively, both DDGS and wood filler composites paired with recycling end-of-life treatment were shown to be the least environmentally damaging method and incurred the lowest cost of all PLA composites considered. This study also suggests that utilization of organic bio-based fillers produces a lower economic/environmental impact, and EI, compared to utilization of inorganic fillers in PLA composites. Accordingly, this research has demonstrated the impact of LCA/TEA paired analysis when assessing the bioplastic and biocomposite processing, which may be utilized as a precursor for parallel research undertakings.  相似文献   

7.
Poly(lactic acid) (PLA) is a biodegradable polymer that exhibits high elastic modulus, high mechanical strength, and feasible processability. However, high cost and fragility hinder the application of PLA in food packaging. Therefore, this study aimed to develop flexible PLA/acetate and PLA/chitosan films with improved thermal and mechanical properties without the addition of a plasticizer and additive to yield extruder compositions with melt temperatures above those of acetate and chitosan. PLA blends with 10, 20, and 30 wt% of chitosan or cellulose acetate were processed in a twin-screw extruder, and grain pellets were then pressed to form films. PLA/acetate films showed an increase of 30 °C in initial degradation temperature and an increase of 3.9 % in elongation at break. On the other hand, PLA/chitosan films showed improvements in mechanical properties as an increase of 4.7 % in elongation at break. PLA/chitosan film which presented the greatest increase in elongation at break proved to be the best candidate for application in packaging.  相似文献   

8.

Polylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immiscible due to the poor interfacial interaction between the hydrophilic starch granules and the hydrophobic PLA. To overcome these limitations, researchers studied the modification, processing, and properties of the mixtures as a strategy to increase the compatibility between phases. This review highlights recent developments, current results, and trends in the field of TPS/PLA-based compounds during the last two decades, with the main focus of improving the adhesion between the two components. The TPS/PLA blends were classified as plasticized, compatible, reinforced and with nanocomposites. This article presents, based on published research, TPS/PLA combinations, considering different methods with significant improvements in mechanical properties, with promising developments for applications in food packaging and biomedicine.

  相似文献   

9.
Sorbitol and glycerol were used to plasticize sugar beet pulp-poly(lactic acid) green composites. The plasticizer was incorporated into sugar beet pulp (SBP) at 0%, 10%, 20%, 30% and 40% w/w at low temperature and shear and then compounded with poly(lactic acid) (PLA) using twin-screw extrusion and injection molding. The SBP:PLA ratio was maintained at 30:70. As expected, tensile strength decreased by 25% and the elongation increased. Acoustic emission (AE) showed correlated debonding and fracture mechanisms for up to 20% w/w plasticizer and uncorrelated debonding and fracture for 30–40% sorbitol and 30% glycerol content in SBP–PLA composites. All samples had a well dispersed SBP phase with some aggregation in the PLA matrix. However, at 40% glycerol plasticized SBP–PLA composites exhibited unique AE behavior and confocal microscopy revealed the plasticized SBP and PLA formed a co-continuous two phase system.
V. L. FinkenstadtEmail:
  相似文献   

10.
The aim of this study is to analyse the environmental impacts (EIs) of the process of preparation of new biocomposite materials obtained from polylactide (PLA) and chicken feathers (CFs). Two CFs stabilization methods and different percentages of CFs have been studied. The EIs of these new composites were compared to the impact of virgin PLA. Cradle-to-gate life cycle inventories were assessed for 0–35% v/v of CFs in a CFs/PLA biocomposite. Two CFs stabilization processes, autoclave and surfactant, were tested and compared with the aim to prioritize one of them from the environmental point of view. A composite plate of 184?×?184?×?2.2 mm3 was defined as the functional unit. Autoclave stabilization process exhibited lower environmental impact compared with surfactant stabilization process mainly due to both the lower requirements of electricity and water and the reduced pollution loads of the generated wastewater. Thus, the autoclave process was selected as the standard method when comparing the EIs of the proposed CFs/PLA biocomposites. In this sense, the addition of CFs to PLA matrix proportionally reduces all the EIs compared to pure PLA due to the replacement of PLA with CFs. This behaviour can be explained because the PLA production accounts for the 99% of the impact of the biocomposite. Consequently, CFs conveniently stabilized might be an alternative raw material to prepare CFs/PLA biocomposites with less environmental impact compared to pure PLA.  相似文献   

11.
In this study, the hydrolytic degradation of Poly(lactic acid) (PLA) and acetylated PLA (PLA-Ac)–clay nanocomposites were investigated. The organo clay was obtained by ion exchange reaction using cetyl tri methyl ammonium bromide (CTAB). Nanocomposites containing 2, 5 and 8% mass ratio of organo clay (CTAB-O) were prepared. PLA and its organo clay nanocomposites were characterized by scanning electron microscope (SEM), thermo gravimetric analysis (TGA) and X-ray diffraction (XRD) to determine the morphology before and after hydrolytic degradation. Fourier transform infrared (FTIR) analyses of PLA and PLA-Ac were also obtained. The hydrolytic degradation of polymers and their composites were investigated in the phosphate buffered saline solution (PBS). The results showed that controlled hydrolytic degradation was observed in the samples with end group modification of PLA. While weight loss of PLA films was 28%, that of PLA-Ac films was 18% after 60 days degradation time. The weight loss was obtained as 29.5 and 25.5% for PLA-5 wt% organo clay (PLA/5CTAB-O) and PLA-Ac-5 wt% organo clay (PLA-Ac/5CTAB-O) nanocomposites films, respectively. It was also observed that thermal degradation of PLA-Ac was much more than that of PLA. Hydrolytic degradation increased depending on organo clay content. The end group modificated PLA results in controlled hydrolytic degradation. While hydrolytic degradation in polymer films occurred as surface erosion, bulk erosion was observed in composite films.  相似文献   

12.
Melt-pressed films of polycaprolactone (PCL) and poly(lactic acid) (PLA) with processing additives, CaCO3, SiO2, and erucamide, were subjected to pure fungal cultures Aspergillus fumigatus and Penicillium simplicissimum and to composting. The PCL films showed a rapid weight loss with a minor reduction in the molecular weight after 45 days in A. fumigatus. The addition of SiO2 to PCL increased the rate of (bio)erosion in A. fumigatus and in compost. The use of a slip additive, erucamide, was shown to modify the properties of the film surface without decreasing the rate of bio(erosion). Both the rate of weight loss and the rate of molecular weight reduction of PCL increased with decreasing film thickness. The addition of CaCO3 to PLA significantly reduced the thermal degradation during processing, but it also reduced the rate of the subsequent (bio)degradation in the pure fungal cultures. PLA without additives and PLA containing SiO2 exhibited the fastest (bio)degradation, followed by PLA with CaCO3. The degradation of the PLA films was initially governed by chemical hydrolysis, followed by an acceleration of the weight change and of the molecular weight reduction. PLA film subjected to composting exhibits a rapid decrease in molecular weight, which then remains unchanged during the measurement period, probably because of crystallization.  相似文献   

13.
The purpose of this study is to quantify comparable environmental impacts within a Life Cycle Analysis (LCA) perspective, for buildings in which the first (Materials) and last (End of Life) life cycle stages are adjusted to several waste/material management options. Unlike most LCAs, the approach is “top-down” rather than “bottom-up”, which usually involves large amounts of data and the use of specific software applications. This approach is considered appropriate for a limited but expedient LCA designed to compare the environmental impacts of different life cycle options.Present results, based on real buildings measurements and demolition contractor activities, show that shallow, superficial, selective demolition may not result in reduced environmental impacts. Calculations actually show an increase (generally less than 5%) in most impact categories for the Materials and End of Life stages because of extra transportation needs. However, core material separation in demolition operations and its recycling and/or reuse does bring environmental benefits. A reduction of around 77% has been estimated in the climate change impact category, 57% in acidification potential and 81% in the summer smog impact (for the life cycle stages referred).  相似文献   

14.
Poly(lactic acid)/halloysite nanoclay composites (PLA/HNC) containing maleic anhydride grafted styrene-ethylene/butylene-styrene (SEBS-g-MAH) were produced using melt compounding followed by compression molding. The effects of hygrothermal aging on the thermal properties and functional groups changes of the HNC reinforced PLA (with and without SEBS-g-MAH) at three different temperatures (i.e., 30, 40 and 50 °C) were analyzed using differential scanning calorimetry and Fourier transform infrared spectroscopy techniques. The diffusion coefficient (D) of PLA was decreased by the incorporation of HNC and SEBS-g-MAH. The activation energy of water diffusion (E a ) of PLA/HNC/SEBS-g-MAH nanocomposites was higher than that of pure PLA. The glass transition temperature (T g ), cold-crystallization temperature (T cc ) and melting temperature (T m ) of the PLA sample were shifted to lower temperature and the effect was more pronounced at 50 °C. The carbonyl index values of all PLA samples increased after immersed in 40 and 50 °C, which is due to the formation of higher amount of carboxyl groups during the hydrolysis process.  相似文献   

15.
The anaerobic biodegradation rates of four different sizes of poly (lactic acid) (PLA) films (thickness 25???m) in anaerobic sludge at 55?°C were examined. The anaerobic biodegradation rates of small pieces of PLA film were slower than for large pieces of PLA film. We also examined whether PLA film could also be used as a reference material in the anaerobic biodegradation test in addition to PLA powder. The anaerobic biodegradation rate of PLA film became slower with lower activity sludge, but the rate of decrease was gradual, and the anaerobic biodegradation rate of PLA film was faster than the PLA powder (125?C250???m). The anaerobic biodegradation rate of the PLA powder (125?C250???m) reflected the plastic anaerobic biodegradation activity of the sludge more accurately than the thin PLA film (thickness 25???m). Consequently, PLA powder (125?C250???m) is more suitable than thin PLA film (thickness?<?25???m) for use as a reference material to assess the plastic anaerobic biodegradation activity of the sludge in an anaerobic biodegradation test at 55?°C.  相似文献   

16.
The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin’s MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.  相似文献   

17.
The effects of a polymeric chain extender on the properties of bioplastic film made from blends of plasticized polylactic acid (p-PLA) and thermoplastic starch (TPS) were studied. Joncryl? ADR 4370S, a polymeric chain extender, was blended with TPS and p-PLA at a level of 1% (w/w). A co-rotating twin-screw extrusion process was used to prepare films with various ratios of TPS and p-PLA. Mechanical and physical properties of films, including film tensile properties, surface energy, moisture content, hydrophilicity, moisture sorption behaviour and thermal mechanical properties were determined. During extrusion, films enhanced by 1% Joncryl addition demonstrated more desirable and consistent qualities, such as smoother film edge and surface. Addition of Joncryl significantly improved film tensile strength, 0.2% offset yield strength, and elongation, especially evident with the 250% elongation of 70/30 (TPS/p-PLA) film. Total surface energy of films was not significantly influenced by addition of Joncryl. However, the polar contribution to the total surface energy of 70/30 (TPS/p-PLA) film increased after the addition of Joncryl. The study showed that blending TPS with p-PLA transformed TPS film from being highly hydrophilic to highly hydrophobic. On the other hand, addition of Joncryl had limited effects on moisture content, water solubility, glass transition temperature and moisture sorption behaviour of TPS/p-PLA blend films.  相似文献   

18.
This article contains a concept of the mechanical properties improvement of the highly crystalline poly(lactic acid) (PLA) and filled composites. PLA as a semi-crystalline thermoplastic polymer was plasticized with poly(ethylene glycol) and filled with 30 vol% of organic and/or inorganic filler. The degree of crytallinity was intentionally increased by annealing. The filler/polymer matrix interphase was modified with the addition of 4, 4′-Methylenediphenyl diisocyanate (MDI). The effect of compatibilizing as well as plasticizing agent on the thermal and mechanical properties, the water-absorption behaviour and crystallization characteristics were studied. The results indicated that high content of filler and crystallites have a strong influence on the composite′s mechanical properties despite of the plasticizer content, showing a high Young modulus. The MDI seems to react in preference easy with plasticizing agent and then alternatively with filler due to the low functionality of commercial PLA grade.  相似文献   

19.
A hydrophilic copolymer, ethylene–vinyl alcohol (EVOH), was incorporated into the poly(lactic acid) (PLA) matrix to improve the barrier property of PLA through twin-screw extrusion rather than the typical coextrusion process. A chain extender, poly[(ethylene)-co-(methyl acrylate)-co-(glycidyl methacrylate)] (PEMG), was used to reduce the probability of the thermal degradation of PLA during melt compounding. Biaxial stretching was used to enhance the microstructure and barrier property of PLA-PEMG/EVOH films. Experimentally, PEMG considerably reduced the probability of the thermal degradation of the PLA-PEMG sample. Biaxial stretching increased the tensile strength and decreased the value of elongation at break of the PLA-PEMG/EVOH80 (PLA/EVOH 100/80) film. Because of the efficient blending of PLA/EVOH in the twin-screw extruder, the dispersion of EVOH in the PLA matrix revealed homogeneous dispersion with a domain size of 1–5 μm. EVOH effectively improved the water vapour transmission rate (WVTR) of PLA through melt blending. Blending PLA-PEMG with EVOH substantially decreased the WVTR from 250 cc—20 μm/m2-day-atm for neat PLA to approximately 65 cc—20 μm/m2-day-atm for the PLA-PEMG/EVOH80 film, a decrease of approximately 74 % compared with neat PLA. Moreover, the WVTR decreased further from 65 cc—20 μm/m2-day-atm for the unstretched PLA-PEMG/EVOH80 film to 6.3 cc—20 μm/m2-day-atm for the film stretched at a stretch ratio of 3.5 × 3.5 and at 100 %/s, a decrease of approximately 90 % compared with neat PLA.  相似文献   

20.
Biodegradation of poly(lactic) acid (PLA) has been studied extensively, but there is only limited knowledge about the effect of irradiation sterilization on its biodegradability. The aim of this work was to examine the aerobic biodegradation of gamma and electron beam irradiated PLA films along with the effects of aging (3, 6, and 9 months of storage) using a direct measurement respirometric system. Commercial PLA film was exposed to a simulated aerobic compost environment, and its mineralization was 96 % at day 85. Gamma and electron beam irradiation affected the biodegradation of the post-irradiated PLA film. Aging irradiated PLA had some potential to increase the biodegradation rate, as the average value of mineralization after 9 months of storage was higher than for the non-irradiated PLA. Comparison of the effect of storage time on the biodegradability of PLA showed a significant increase in biodegradation of the gamma irradiated PLA after 3 months (70 %) and 9 months of storage (130 %). Similarly, there was a significant difference in the biodegradation of electron beam irradiated PLA between 3 months (68 %) and 9 months of storage (120 %). Due to the priming effect, the percent mineralization of gamma irradiated and E-beam irradiated PLA after 9 months of storage was greater than 100 %. Both non-irradiated and irradiated PLA films can be considered biodegradable plastics since they showed mineralization percentage larger than 90 % of that of the positive control at the end of the test period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号