首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2× after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property.  相似文献   

2.
Thermal treatment of municipal solid waste (MSW) has become a common practice in waste volume reduction and resource recovery. For the utilization of molten slag for construction materials and metal recovery, it is important to understand the behavior of heavy metals in the melting process. In this study, the correlation between the contents of elements in feed materials and MSW molten slag and their distributions in the ash melting process, including metal residues, are investigated. The hazardous metal contents in the molten slag were significantly related to the contents of metals in the feed materials. Therefore, the separation of products containing these metals in waste materials could be an effective means of producing environmentally safe molten slag with a low hazardous metals content. The distribution ratios of elements in the ash melting process were also determined. The elements Zn and Pb were found to have a distribution ratio of over 60% in fly ash from the melting furnace and the contents of these metals were also high; therefore, Zn and Pb could be potential target metals for recycling from fly ash from the melting furnace. Meanwhile, Cu, Ni, Mo, Sn, and Sb were found to have distribution ratios of over 60% in the metal residue. Therefore, metal residue could be a good resource for these metals, as the contents of Cu, Ni, Mo, Sn, and Sb in metal residue are higher than those in other output materials.  相似文献   

3.
In the combustion facilities, halogens (Cl, F, Br, I) should be considered with regard to the control of the compounds such as polychlorinated dibenzodioxins (PCDD), polychlorinated dibenzofurans (PCDF), halogenated polyaromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and volatile heavy metals formed as a result of incomplete combustion and caused adverse environmental effects. In this study halogens were observed in Izmit Hazardous and Clinical Waste Incinerator (IZAYDAS). Halogen contents of the combustion menu, flue gas, fly ash, bottom ash and filter cake were measured and their distributions in these exit streams were determined. Results showed that the major part of the halogens was partitioned to solid residues, i.e., bottom ash and filter cake which represents the removal by wet scrubbers. Fly ash and flue gas fractions of halogens were much lower due to the reduced formation of volatile compounds.  相似文献   

4.
This study investigates the effects of the bed material size distribution, the operating conditions and the agglomeration/defluidization phenomenon on the heavy metal pollutant emissions in the combustion process. After defluidization, the emission concentration of heavy metals increased, because Na may form a low melting eutectic material that enhances bed material adherence. The emission of Cd increased when the feed simulated urban residues contained sodium; however, the presence of Na had no significant effect on the emission of Cr. Furthermore, the Cd emission concentration was low when the material had a Gaussian distribution; however, the decreases in the Cd emission when the bed material had narrow, binary or flat distributions were not significant. The heavy metal Cr showed the same trend. In addition to the operating parameters, the bed material size distribution may influence the heavy metal emissions during combustion processes.  相似文献   

5.
This paper presents the experimental research process and results about flue gas purifying of municipal solid wastes (MSW) incineration using in-pipe jet adsorption techniques. MSW incineration was carried out in a fluidized bed test rig, and the flue gas purifying was carried out in an in-pipe jet adsorption test rig. The experimental results are as follows: when the feedstock of activated carbon is 1.6g/Nm(3), the desulfurization efficiency is 83%, the denitrification efficiency is 41%, and the dechlorination efficiency is 27%. The order of purifying effect of the three kinds of adsorbents on acidic gases from MSW incineration is activated carbon>activated bauxite>kaolin. Comparison of adsorption capabilities of the three kinds of adsorbents to heavy metals shows that activated carbon is the best additive to remove Cd, Pb and Cu, kaolin is inferior, and activated bauxite is the worst one. However, activated bauxite is the best additive to remove Hg, and it can remove Cd effectively. PAHs in fly ash are dominated by three-, four-, and five-ringed PAHs, and PAHs in the flue gas mainly include three- and four-ringed PAHs. When the injected quantity of additive is constant, the order of cleaning effect on PAHs is kaolin>activated carbon>activated bauxite. These three kinds of adsorbents have different purifying effects on acidic gases, heavy metals and PAHs in the flue gas from MSW incineration. In general, activated carbon has a better adsorption capability.  相似文献   

6.
One aerobic and two combined bio-drying processes were set up to investigate the quantitative relationships of sorting efficiency and combustion properties with organics degradation and water removal during bio-drying. Results showed that the bio-drying could enhance the sorting efficiency of municipal solid waste (MSW) up to 71% from the initial of 34%. The sorting efficiency was correlated with water content negatively (correlation coefficient, r = −0.89) and organics degradation rate positively (r = 0.92). The higher heating values (HHVs) were correlated with organics degradation negatively for FP (i.e. the sum of only food and paper) (r = −0.93) but positively for the mixing waste (MW) (r = 0.90), whereas the lower heating values (LHVs) were negatively correlated with water content for both FP (r = −0.71) and MW (r = −0.96). Other combustion properties depended on organics degradation performance, except for ignition performance and combustion rate. The LHVs could be greatly enhanced by the combined process with insufficient aeration during the hydrolytic stage. Compared with FP, MW had higher LHVs and ratios of volatile matter to fixed carbon. Nevertheless, FP had higher final burnout values than MW.  相似文献   

7.
An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.  相似文献   

8.
In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are essential for the improvement of resource recovery in the Thermo-Re® process.  相似文献   

9.
This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes.Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.  相似文献   

10.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   

11.
 In order to control the emission of trace metals from combustion and incineration systems, sorbents and filters are sometimes used. However, the effectiveness of these methods is greatly affected by the volatility of the metals and the way in which they speciate during combustion, and afterwards during condensation, and physical or chemical sorption. Although there has been a lot of research into the mechanisms by which trace metals speciate and subsequently appear in submicron particles, the details of these mechanisms are not yet thoroughly understood. In this study, a chemical equilibrium approach was used to qualitatively determine the speciation of lead, cadmium, and chromium in Cl and S environments. The reaction conditions of sorbents were also tested numerically in order to understand the reaction behavior of metals with sorbents. This article reports the influence of different concentrations of Cl and SO2 on Pb, Cd, and Cr speciation, as representatives of other trace elements. The partitioning behavior of metals during combustion was also examined for Cl and S. The results obtained indicate that most metals exist in the vapor phase, even at low temperatures, when chlorine is present. However, the addition of SO2 enhances the formation of the condensed phase, except at extremely high temperatures. This observation was not significant for Cd or Cr. The higher the concentration of Cl the higher the retention of trace metals in the vapor phase, even at low temperatures. Results from comparisons of the reactivities of mixed metals with Cl indicate that the presence of Fe limits the reactivity of most trace metals with Cl except at higher concentrations. In the presence of Fe, alkali metals are the first to react with Cl. If Fe is not present, most trace metals react with Cl, and the activity increases with higher concentrations. On the other hand, the partitioning characteristics of S show that its presence generally means that metals remain in the condensed phase. Sulfur is more reactive with alkali metals than with other trace metals. Received: June 6, 2001 / Accepted: April 30, 2002  相似文献   

12.
The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.  相似文献   

13.

Chemical Looping Combustion (CLC) has been found to be a better alternative in converting Municipal Solid Waste (MSW) to energy and has the potential to reduce the generation of dioxins due to the inhibition of the de-novo synthesis of dioxins. This study comprehensively reviews the experimental studies of CLC of MSW, the oxygen carriers, reactor types, performance evaluation, and ash interaction studies. Modeling and simulation studies of CLC of MSW were also critically presented. Plastic waste is MSW’s most studied non-biomass component in MSW under CLC conditions. This is because CLC has been shown to reduce the emission of dioxins and furans, which are normally emitted during the conventional combustion of plastics. From the several oxygen carriers tested with MSW’s CLC, alkaline earth metals (AEM) modified iron ore was the most effective for reducing dioxin emissions, improving combustion efficiency and carbon conversion. Also, oxygen carriers with supports were more reactive than single carriers and CaSO4/Fe2O3 and CaSO4 in silica sol had the highest oxygen transport ability. Though XRD analysis and thermodynamic calculations of the reacted oxygen carriers yielded diverse results due to software computation constraints, modified iron ore produced less HCl and heavy metal chlorides compared to iron ore and ilmenite. However, alkali silicates, a significant cause of fouling, were observed instead. The best reactor configuration for the CLC of MSW is the fluidized bed reactor, because it is easy to obtain high and homogeneous solid–gas mass transfer. Future research should focus on the development of improved oxygen carriers that can sustain reactivity after several cycles, as well as the system’s techno-economic feasibility.

  相似文献   

14.
As the world’s leading manufacturing country, China has become the largest dumping ground for e-waste, resulting in serious pollution of heavy metals in China. This study reviews recent studies on environmental effects of heavy metals from the e-waste recycling sites in China, especially Taizhou, Guiyu, and Longtang. The intensive uncontrolled processing of e-waste in China has resulted in the release of large amounts of heavy metals in the local environment, and caused high concentrations of metals to be present in the surrounding air, dust, soils, sediments and plants. Though the pollution of many heavy metals was investigated in the relevant researches, the four kinds of heavy metals (Cu, Pb, Cd and Cr) from e-waste recycling processes attracted more attention. The exceedance of various national and international standards imposed negative effects to the environment, which made the local residents face with the serious heavy metal exposure. In order to protect the environment and human health, there is an urgent need to control and monitor the informal e-waste recycling operations.  相似文献   

15.
This study estimated the kinetics of the mono- and co-combustion of sewage sludge pellets and combustible wastes such as municipal solid waste (MSW) and refuse-derived fuel (RDF). Sewage sludge was manufactured into pellets with a diameter of 8, 12, or 16 mm and a length of 30 mm. The RDF was composed of paper and plastics and was formed into pellets with a diameter of 8 mm and a length of 30 mm. MSW samples were synthesized using combustible wastes such as garbage, paper, plastics, and wood. The MSW was adjusted to have a moisture content of around 40% after shredding to under 10 mm. A laboratory-scale batch type stoker incinerator was used for the combustion and the gas composition of the flue gas was measured. The activation energy was calculated using the experimental results, and then the relation of the decomposition rate and reaction time was evaluated using the shrinking core model. The decomposition rate of the sludge pellets decreased as their diameter and moisture content increased, and the co-combustion of sludge pellets and combustible waste was affected by the amount of combustible waste. The individual combustion rates of the cylindrical sludge pellets or RDF were mainly controlled by the chemical reaction, but in the case of shredded MSW it was mostly influenced by gas diffusion. The rate for the co-combustion of sludge pellets and combustible wastes was mainly determined by the combustion rate of the combustible waste. The activation energy of the 8-mm-diameter sludge pellets was between 6.70 and 10.0 kcal/mol, according to the moisture content, but it was lower for MSW and RDF. In the case of MSW co-combustion, the reaction rate accelerated as the moisture content of the sludge pellets decreased, but it was markedly increased by the addition of RDF, regardless of the sludge moisture content.  相似文献   

16.
Pig manure usually contains a large amount of metals, especially Cu and Zn, which may limit its land application. Rock phosphate has been shown to be effective for immobilizing toxic metals in toxic metals contaminated soils. The aim of this study work was to investigate the effect of rock phosphate on the speciation of Cu and Zn during co-composting of pig manure with rice straw. The results showed that composting process and rock phosphate addition significantly affected the changes of metal species. During co-composting, the exchangeable and reducible fractions of Cu were transformed to organic and residue fractions, thus the bioavailable Cu fractions were decreased. The rock phosphate addition enhanced the metal transformation depending on the level of rock phosphate amendment. Zinc was found in the exchangeable and reducible fractions in the compost. The bioavailable Zn fraction changed a little during the composting process. The composting process converted the exchangeable Zn fraction into reducible fraction. Addition of an appropriate amount (5.0%) of rock phosphate could advance the conversion. Rock phosphate could reduce metal availability through adsorption and complexation of the metal ions on inorganic components. The increase in pH and organic matter degradation could be responsible for the reduction in exchangeable and bioavailable Cu fractions and exchangeable Zn fraction in rock phosphate amended compost.  相似文献   

17.
This study investigates four extraction methods (water extraction, toxicity characteristics leaching procedure (TCLP), modified TCLP with pH control, and sequential chemical extraction (SCE)), each representing different liquid-to-solid (L/S) ratios, pH controls, and types of leachant, and their effects on the leaching concentration of heavy metals in municipal solid waste (MSW) incinerator air pollution control (APC) residue. The results indicated that for extraction with distilled water, the heavy metal leaching concentration (mg/l) decreased with L/S ratio, but the amount of heavy metal released (AHMR), defined as the leached amount of heavy metals to the weight of the tested sample (mg/kg), increased with an increase in L/S ratio, in the range of 2-100. The results also showed that both the leaching concentration and the amount of released metals were strongly pH-dependent in the TCLP and modified TCLP tests. In the case of pHs lower than 6.5, the leaching concentrations of Cd, Pb, Cu, Zn, and Cr decreased with an increase in pH. As pH increased higher than 6.5, Cr and Zn were almost insoluble. Meanwhile, Cd and Cu also showed a similar trend but at pHs of 8.5 and 7.5, respectively. Due to the nature of amphoteric elements, in the case of pHs higher than 7, the Pb leaching concentration increased with increasing pH. In modified TCLP tests with the pH value controlled at the same level as in the SCE test, the heavy metal speciation approached the extractable carbonate bound fraction by the SCE. Both amounts of targeted metals leached from the SCE and modified TCLP tests were much higher than those for the regular TCLP and water extraction tests.  相似文献   

18.
SUWIC's unique mobile metals emissions monitoring laboratory has been used to measure metal pollutant spikes in the flue gas from a municipal solid waste incinerator, prior to gas clean-up. The laboratory has a heated sampling probe that extends into the plant, allowing the simultaneous on-line measurement of the concentrations of more than 30 metals by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). As little is known about temporal variation in metal concentrations, this capability is seen as a major advance. The graphs of continuous measurements show that the elemental loading is far from uniform, and that concentrations fluctuate far more than may have been conventionally expected. There are occasional significant spikes in the emission profiles for cadmium and mercury, which are believed to be due to specific items in the waste feed material. Continuous monitoring measurements are of significant value for those seeking to model metal behaviour in combustion and in pollution control devices.  相似文献   

19.
The characterization of PCDD/Fs and heavy metals in the flue gas and fly ash of Harbin municipal solid waste (MSW) incineration plant, located in the northeast of China, was investigated in this study. The MSW was treated in a twin internal fluidized (TIF) bed incinerator. The results indicate that the emission of PCDD/Fs into the environment is 0.02 ng I-TEQ/m3 and the level of PCDD/Fs in the fabric filter fly ash is 0.7982 ng I-TEQ/g. The leachability levels of Pb, Cd and Hg in the fly ash are below the limits of environmental protection standard in China. However, the contents of Cu, Zn, and Hg are high in the fly ash. This suggests that the fly ash is a hazardous waste that requires special treatment and disposal. The practice of more than four years of operation shows that the TIF bed incinerator is very suitable and practical for China.  相似文献   

20.
The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号