首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Floor dusts from Vietnamese end-of-life vehicle (ELV)-processing households were investigated to elucidate the contamination levels and exposure risk of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and dioxin-related compounds (DRCs). The concentrations were in order of PBDEs (260–11,000, median 280 ng/g overall) > PCBs (19–2200, median 140 ng/g) > dioxin-like PCBs (8.8–450, median 22 ng/g) ? polybrominated dibenzo-p-dioxin/dibenzofurans (PBDD/Fs, 2000–28,000, median 8500 pg/g) > polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs, 440–4100, median 1800 pg/g) > MoBPCDD/Fs (1.9–1200, median 250 pg/g). Concentrations of PCBs and DRCs were higher than those reported for Vietnamese urban houses, indicating ELV processing as a significant source of these contaminants. Higher concentrations of PCBs relative to PBDEs suggest the abundance of old electrical capacitors/transformers in ELVs. The PBDD/F and PCDD/F profiles were indicative of DecaBDE-containing materials and combustion sources, respectively. PBDFs, PCDFs and DL-PCBs were the most important dioxin-like toxic equivalent (TEQ) contributors. The estimated PCB and TEQ intake doses from dust ingestion approached or exceeded the reference doses for children living in some ELV-processing households, indicating potential health risk. More comprehensive risk assessment of the exposure to PCBs and DRCs is required for residents of informal ELV recycling sites.  相似文献   

2.
This paper describes a hydrometallurgical process for recovering neodymium (Nd) and dysprosium (Dy) from a magnetic waste sludge generated from the Nd–Fe–B(–Dy) manufacturing process. Phase analysis by XRD study revealed Nd(OH)3 and Fe2O3 as main mineral phases, and chemical analysis by ICP showed the contents of 35.1 wt% Nd, 29.5 wt% Fe, 1.1 wt% Dy and 0.5 wt% B. A solution of 1 M HNO3 + 0.3 M H2O2 was used to dissolve up to 98 % Nd and 81 % Dy, while keeping Fe dissolution below 15 % within 10 min. Fe dissolved in solution was completely removed as Fe(OH)3 at pH 3 followed by precipitation of Nd and Dy with oxalic acid (H2C2O4) and recovered 91.5 % of Nd and 81.8 % of Dy from solution. The precipitate containing Nd and Dy was calcined at 800 °C to obtain Nd2O3 as final product with 68 % purity, and final recovery of 69.7 % Nd and 51 % of Dy was reported in this process.  相似文献   

3.
Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ18PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.  相似文献   

4.
The adsorption capacity of fine rubber particle media (FRPM) derived from discarded vehicle tires and the consumer wasted rubber sources was evaluated for hydrogen sulfide treatment. H2S breakthrough tests were performed at various zinc contents, temperatures, and packing quantities. High zinc concentrations increased the adsorption capacity of FRPM significantly. H2S removal by FRPM was optimized at a packing quantity of 75 % of the column volume, and the adsorption capacity increased with reactor temperature within the range of 20–85 °C. The regeneration of ZnCl2 solution was reliable for increasing regeneration capacity of the FRPM-adsorbed H2S. FRPM seems to be an attractive alternative of H2S adsorbents in terms of cost effectiveness compared to traditional materials.  相似文献   

5.
In this study, a very promising way of treating and recycling spent nickel catalysts of fertilizer plants in Vietnam was proposed. Firstly, nickel was recovered from spent catalyst using HNO3—leaching process. Results show that nickel recovery of over 90% with a purity of over 90% can be achieved with HNO3 2.1–2.5 M at 100?°C in 75 min. The residue after leaching is not considered as a hazardous waste according to the Vietnamese regulations. Then, the leachate solution was used as a precursor to prepare a model catalyst for exhaust gas (CO, HC, NOx) treatment. In comparison with the catalyst prepared from the commercial nickel nitrate solution, the catalyst synthesized from recovered nickel exhibits similar properties and activities. The influence of Ni loading of Ni/alumina catalyst as well as the modification of active phase by some metals addition (Mn, Ba, Ce) was also investigated. It is feasible to modify active phase by transition metals such as Mn, Ba, and Ce for complete oxidation of CO and HC at 270?°C and a reduction of NOx below 350?°C at high volumetric flow condition (GHSV?=?110.000 h?1).  相似文献   

6.
This paper presented a novel process for production of furfural by hydrothermal degradation of corncob over biochar catalyst, in which it was prepared with the recycling degradation solution and lignocellulosic solid residues. The biochar catalyst was papered by lignocellulose residues and concentrated saccharide solution, and then impregnated in 0.5 mol/L sulphuric acid at room temperature for 24 h assisted by the ultrasonic vibration. In the system of recycling, 8.8 % lignocellulose residues and 100 % concentrated saccharide solution from corncob hydrolysis have been recycled. Hydrolysis of corncob was carried out at 180 °C for duration of 170 min over the biochar catalyst. The experimental results have shown that the furfural yield of up to 37.75 % and overall corncob conversion rate of 62.00 % could be achieved under optimum operating conditions for the catalysts preparation and the corncob hydrolysis. It is believed that the acid density of 4.27 mmol/g of biochar catalyst makes the SO3H groups cleave β-1,4 glycosidic linkages effectively and hydrolyze the cellulose and hemicellulose to water-soluble sugars, as well as to facilitate dehydration of xylose to give the product of furfural.  相似文献   

7.
In this paper, an efficient recovery of rare earth elements from waste fluorescent phosphors has been reported and the novel process of alkali fusion and acid leaching has been proposed. The experimental results have shown that the key for efficient recycling is the complete dissolution of waste fluorescent phosphors. The Na2O2-to-waste mass ratio, calcination temperature and reactive time play considerable roles in rare earth elements extraction during the alkali fusion process. The optimal conditions in terms of temperature, time and Na2O2-to-waste mass ratio are 650 °C, 15 min and 2:1, respectively, under which more than 99.5 % rare earth elements are extracted. The possible reaction mechanism of alkali fusion has been proposed.  相似文献   

8.
Recently, a typical semi-automatic recycling line is proved to be a feasible method for resource recovery of raw material of waste CRTs. However, there are no relevant studies about health risk assessment of the particles and heavy metals diffused from this physical recycling process for CRTs. In this study, TSP, PM10 and heavy metals (Cr, Ni, Cu, Zn, Cd and Pb) in the ambience of the workshop have been evaluated. The mean concentrations of TSP and PM10 in the workshop were 481.5 and 316.9 μg/m3, respectively. Meanwhile, it can be seen that Zn (8.1 and 7.9 μg/m3, respectively) was the most enriched metal in TSP and PM10, followed by Pb (3.2 and 3.0 μg/m3, respectively). Health risk assessment showed that the total hazard index was 3.29, exceeding the danger threshold. The health risk of different metals was Cr > Cd > Ni. In short, the research results show that mechanical–physical process for e-waste recycling do exist the pollutant mission. So the effective measures should be taken to reduce the harm of pollutants on the workers’ health.  相似文献   

9.
Activated carbons were produced from waste pine wood sawdust using fast activation with H3PO4 in a spouted bed. In this study, activation temperature was set as 800 °C, and activation time ranged from 1 to 15 min. Experimental results show that sawdust impregnated with higher mass ratio of H3PO4 would be agglomerated in spouted bed, and difficult to fluidize. Therefore, an amount of quartz sand was added to assist for good fluidization. Fluidization of particle can improve the BET surface area or micropore volume of activated carbons. High BET surface area activated carbons can be obtained with activation time of only 1–5 min by combining the fluidization and H3PO4 fast activation. The obtained activated carbons contained developed pore structure and abundant surface functional groups (carboxyl, carbonyl and P-containing groups) by SEM–EDS, FTIR and XPS techniques. The particles of impregnation ratio of 1:1 can achieve fluidization without adding the quartz sand, which was convenient for experimental operation and even industrial production, and the BET surface area can reach more than 1000 m2/g in activation time of only 5 min.  相似文献   

10.
We have developed a simple and highly efficient process for the production of 2-pyrrolidone (2-PRN) from biobased l-glutamic acid (Glu). First, we produced γ-aminobutyric acid (GABA) from Glu obtained by fermentation of biomass using Escherichia coli, which is known to possess GABA producing activity. The reaction solution contained only the substrate Glu, bacterial cells, and water, and did not require buffers or coenzymes, pyridoxal-5′-phosphate (PLP). Every 24 h, cells were removed by centrifugation, and GABA containing supernatant was obtained. This reaction can be repeated 14 times by adding water and Glu, without any decrease in activity. Finally, 303.7 g of GABA was produced from 560 g (40 g × 14 times) of Glu with a yield of 77.4 %. The concentration of this solution was almost 40 %. The GABA was then converted to biobased 2-PRN by heating and distillation under reduced pressure without pretreatment. The yield obtained with this chemical process was 95.8 %. These results showed that biobased 2-PRN could be produced from biomass-derived Glu. Biobased 2-PRN has great potential as a raw material to change other petroleum-based materials to biobased materials.  相似文献   

11.
In this study, the preparation of semi-interpenetrating polymer network (semi-IPN) composites composed of natural rubber and condensed tannin was performed by means of the enzyme-mimetic cross-linking of condensed tannin catalyzed by hematin. Prior to the preparation of the composites, the hematin-catalyzed cross-linking behavior of condensed tannin was evaluated by the TGA measurement. The TGA results indicated that condensed tannin was sufficiently cross-linked by the hematin-catalyzed reaction in the presence of appropriate amounts of 30% (w/v) H2O2 aq. to give the relatively thermostable materials. For the preparation of the composites, a solution of condensed tannin and hematin, and subsequently 30% (w/v) H2O2 aq. were added to natural rubber latex and the mixture was stirred at room temperature for 10 min to perform the cross-linking of condensed tannin, followed by drying of the reaction mixture at 50 °C for 5 h, which was subsequently put into a heat device and hot-pressed at 100 °C and 20 MPa for 20 min to give the semi-IPN composite. The tensile stress?Cstrain measurement of the composites was conducted to evaluate the mechanical properties, which were changeable depending on the weight ratios of natural rubber to condensed tannin and the amounts of 30% (w/v) H2O2 aq. Moreover, the miscibility of the cross-linked tannin with natural rubber in the composite was evaluated by the SEM measurement.  相似文献   

12.
This paper presents a study regarding the preparation of MgCr2O4 from waste tannery solution, and chromium leaching behavior is also investigated with varying amounts of sulfate, chloride and calcium. The phase transformation, crystallinity index and crystallite diameter were characterized using XRD, FT-IR and thermal analysis. A well-crystallized MgCr2O4 was successfully prepared at 1400 °C. The sintering temperature had a major impact on the formation of MgCr2O4 compared with sintering time. The MgCr2O4 phase was observed initially at 400 °C and its crystallite diameter increased with increasing temperature. The concentration of total chromium leached and Cr(VI) decreased gradually with increasing temperature. The considerable amount of Cr(VI) was found in the leachate at 300–500 °C caused by Cr(VI) intermediary products. Sulfate and chlorine could impact the transformation efficiency of chromium adversely, and chlorine has a more significant effect than sulfate. The presence of calcium disturbed the formation of MgCr2O4 and new chromium species (CaCrO4) appeared, which resulted in a sharp increase in the concentration of leached Cr(VI). Incorporating Cr(III) into the MgCr2O4 spinel for reusable products reduced its mobility significantly. This was demonstrated to be a promising strategy for the disposal of chromium containing waste resource.  相似文献   

13.
Pure poly(ethylene terephthalate) (PET) resin and metal-/metal oxide-containing PET composites were thermally decomposed in the presence of Ca(OH)2 using a tube reactor. The effects of batch and continuous processing, the presence of Ca(OH)2, and PET size on benzene production were investigated. A maximum benzene yield and purity of 82.9 % and 78.8 wt%, respectively, were obtained at 700 °C in the presence of Ca(OH)2 when using small PET particles; further, a continuous feed reactor was favored over a batch reactor. Effective contact between PET and Ca(OH)2 was important in the PET degradation, which promoted hydrolysis of PET and decarboxylation of terephthalic acid, whereas pyrolysis was suppressed. Furthermore, the results of thermal decomposition of PET-based waste—PET-based X-ray films, magnetic tape, and prepaid cards—indicated that the metal and metal oxides contained in the waste had no significant catalytic effect on PET degradation or on the recovery of benzene-rich oil in the presence of Ca(OH)2.  相似文献   

14.
The aim of this study was to investigate the application of grapeseed oil, a waste product from the wine industry, as a renewable feedstock to make polyesters and to compare the properties of these materials with those derived from soybean and rapeseed oils. All three oils were epoxidized to give renewable epoxy monomers containing between 3.8 and 4.7 epoxides per molecule. Polymerisation was achieved with cyclic anhydrides catalysed by 4-methyl imidazole at 170 and 210 °C. Polymers produced from methyl tetrahydrophthalic anhydride (Aradur917®) had greater tensile strength and Young’s Modulus (tensile strength = 12.8 MPa, Young’s Modulus = 1005 MPa for grapeseed) than methyl nadic anhydride (MNA) derived materials (5.6 and 468 MPa for grapeseed) due to increased volume of MNA decreasing crosslink density. Soybean and grapeseed oils produced materials with higher tensile strength (5.6–29.3 MPa) than rapeseed derived polyesters (2.5–3.9 MPa) due to a higher epoxide functionality increasing crosslinking. T g’s of the polyesters ranged from ?36 to 62 °C and mirrored the trend in epoxide functionality with grapeseed producing higher T g polymers (?17 to 17 °C) than soybean (?25 to 6 °C) and rapeseed (?36 to ?27 °C). Grapeseed oil showed similar properties to soybean oil in terms of T g, thermal degradation and Young’s Modulus but produced polymers of lower tensile strength. Therefore grapeseed oil would only be a viable substitute for soybean for low stress applications or where thermal properties are more important.  相似文献   

15.
Anaerobic co-digestion of dairy manure (DM) and concentrated food processing wastes (FPW) under thermophilic (55 °C) and mesophilic (35 °C) temperatures, and fertilizer value of the effluent were investigated in this study. Two types of influent feedstock were utilized: 100 % DM and a 7:3 mixture (wet weight basis) of DM and FPW. The contents of the FPW, as feedstock were 3:3:3:1 mixture of cheese whey, animal blood, used cooking oil and residue of fried potato. Four continuous digestion experiments were carried out in 10 L digesters. Co-digestion under thermophilic temperature increased methane production per digester volume. However, co-digestion at 35 °C was inhibited. Total Kjeldahl nitrogen (N) recovered after digestion ranged from 73.1 to 91.9 %, while recoveries of ammonium nitrogen (NH4-N) exceeded 100 %. The high recovery of NH4-N was attributed to mineralization of influent organic N. The mixture of DM and FPW showed greater recoveries of NH4-N after digestion compared to DM only, reflecting its greater organic N degradability. The ratios of extractable to total calcium, phosphorus and magnesium were slightly reduced after digestion. These results indicate that co-digestion of DM and FPW under thermophilic temperature enhances methane production and offers additional benefit of organic fertilizer creation.  相似文献   

16.
The aim of this paper is to study the influence of the K2S2O8 content on the properties of poly (vinyl alcohol, (PVA). Firstly, PVA was dissolved in distilled water by heating by heating at 70 °C and then K2S2O8 was added in PVA solution under stirrer. The viscosity of PVA solution in the presence of K2S2O8 was analyzed by Brookfield Viscometers. The effects of K2S2O8 contents, PVA solution, temperature and reaction time on the viscosity of PVA solution were investigated. This was confirmed by Brookfield Viscometers. It is clear that the viscosity of PVA solution in the presence of K2S2O8 increased as function of reaction time and PVA content in solution. Rate of modified PVA was proportional to K2S2O8 contents and temperature and its activation energy was 16 kJ/mol. The structure of PVA in the presence of K2S2O8 changed from original PVA confirmed by ATR-FTIR and solid state NMR. In addition, the thermal properties of PVA containing K2S2O8 were also studied by TGA.  相似文献   

17.
A large amount of hot filter cake (HFC) is annually generated in Iranian zinc plants. It contains 1% zinc, 16–30% manganese, 5–25% calcium and 1–4.5% cobalt. Usually, zinc is selectively leached by an alkaline medium and its residue is known as alkaline leached HFC (ALHFC). In the present study, the possibility of cobalt extraction from ALHFC was investigated using a creative hydrometallurgical process. At the first stage, zinc and cadmium were selectively removed with sulfuric acid. At the second stage, it was deeply focused on the possibility of selective reductive leaching of cobalt by H2O2 as a reductant in the presence of manganese. As results, several differences were found between the mechanism of cobalt and manganese leaching. Accordingly, cobalt leaching was more affected by acid concentration and manganese leaching was more affected by reductant concentration. Consequently, with manipulating these important parameters, it was made possible to selectively separate cobalt from manganese. Based on the obtained results, 90.9% of cobalt and only 10.04% of manganese were leached with 1% of H2O2. At the third stage, pregnant cobalt solution was successfully purified through a solvent extraction process with D2EHPA. Finally, cobalt hydroxide as our final product with a purity of more than 99% was precipitated from the pure pregnant solution at 70 °C.  相似文献   

18.
A continuous system (feeding rate >1 kg/h) consisting of thermal dechlorination pre-treatment and catalytic pyrolysis with Fe-restructured clay (Fe-RC) catalyst was developed for feedstock recycling of PVC-containing mixed plastic waste. The vented screw conveyor which was specially designed for continuous dechlorination was able to achieve dechlorination efficiency of over 90 % with a feedstock retention time longer than 35.5 min. The chlorine content of the pyrolytic oil obtained after dechlorination was in the range of 6.08–39.50 ppm, which meet the specification for reclamation pyrolytic oil in Japan. Fe-RC was found to significantly improve the yield of pyrolytic oil (achieved to 83.73 wt%) at the optimized pyrolysis temperature of 450 °C and catalyst dosage of 60 g. With the optimized parameters, Fe-RC showed high selectivity for the C9–C12 and C13–C19 oil fraction, which are the major constituents of kerosene and diesel fuel, demonstrating that this catalyst can be applied in the pyrolysis of mixed plastic wastes for the production of kerosene and diesel fuel. Overall, the continuous process exhibited high stability and consistently high-oil yield upon reaching steady state, indicating its potential up-scaling application in the industry.  相似文献   

19.
The fermentation conditions for poly(l-lactide) (PLA)-degrading enzyme production by Amycolatopsis orientalis ssp. orientalis were statistically optimized by response surface methodology. The optimal value of the most important factors was 0.39 % PLA and 0.34 % gelatin for 2.81 days of cultivation. Under these conditions, the model predicted a PLA-degrading activity of 155.30 U/l. The verification showed the production amount of 154.2 U/l. The crude enzyme from A. orientalis ssp. orientalis showed potent PLA-degrading ability, which is efficient for the biological recycling of PLA. Up to 4,000 mg/l of PLA granule was completely degraded within 5 days at 45 °C by the crude enzyme. l-lactic acid (600 mg/l) was obtained as a degradation product of PLA after only 2 h of incubation. The results indicated that the crude PLA-degrading enzyme from A. orientalis ssp. orientalis has the potential to degrade PLA to lactic acid for the recycling of PLA industry and waste disposal.  相似文献   

20.
In this paper, emission and distribution behavior of six heavy metals (As, Cd, Cr, Ni, Pb, and Hg), particulate matter and mass distribution of mercury within the different streams of a fluidized bed sewage sludge incinerator are presented. At the inlet of air pollution control devices (APCDs); Cd, Cr, Ni and Pb were mainly enriched in coarse particles; comparatively As content was higher in fine particles (<PM2.5). The concentration of heavy metals in total particulate matter and PM2.5, at the inlet of APCDs, were in the order of Cr > Ni > Pb > As > Cd. Mercury was almost always distributed in flue gas. Metals, other than mercury, were efficiently removed in APCDs and their concentrations in bottom ash, with fly ash being higher, whereas for that in wastewater, then waste sand was lesser. Overall mercury removal efficiency of APCDs was 98.6 %. More than 83.3 % of mercury was speciated into oxidized form at the inlet of APCDs, attributed by higher chlorine content in sludge. Mercury was mainly distributed in wastewater (78.4 %), wastewater from a spray dry reactor (16.8 %), fly ash in a hopper (3.4 %) and flue gas (1.4 %). This result is one of the first for data to be obtained; more experiments are required to control emission from such sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号