首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
End-of-life vehicles (ELVs) are increasingly being recognized as a possible future resource pool for rare earth elements (REEs). This study provides the amount of REEs that can be recovered from ELVs in Japan based on dismantling survey, chemical identification and substance flow analysis. The REEs were quantified from common passenger vehicles and hybrid electric vehicles. We targeted 17 REEs in estimation of REE contents in ELVs. Four scenarios were developed to explore the recovery of REEs from ELVs. In these scenarios, NiMH batteries and motors containing NdFeB magnets were identified as target components due to they are main REEs carriers; we focused on interpretation of neodymium (Nd) and dysprosium (Dy) owing to they are two of the most critical REEs. The results suggest that 2700 (±500) tons of REEs can be recovered, of which 520 (±100) tons and 31 (±7) tons will be contributed by Nd and Dy in 2030. Meanwhile, the Dy recovered from ELVs can satisfy 23 % (±6 %) of the demand for NdFeB magnets and NiMH battery cells in automobile production of Japan; the Nd recovered from ELVs can satisfy 49 % (±9 %) of the production demands.  相似文献   

2.
Automobiles usually contain toxic substances, such as lubricants, acid solutions and coolants. Therefore, inappropriate handling of end-of-life vehicles (ELVs) will result in environmental pollution. ELV parts, which include metallic and non-metallic substances, are increasingly gaining recycling value due to the recent global shortage of raw materials. Hence, the establishment of a proper recycling system for ELVs will not only reduce the impact on the environment during the recycling process, but it will also facilitate the effective reuse of recycled resources. Prior to 1994, the recycling of ELVs in Taiwan was performed by related operators in the industry. Since the publishing of the “End-of-life vehicle recycling guidelines” under the authority of the Waste Disposal Act by the Environmental Protection Administration (EPA) in 1994, the recycling of ELVs in Taiwan has gradually become systematic. Subsequently, the Recycling Fund Management Board (RFMB) of the EPA was established in 1998 to collect a Collection–Disposal–Treatment Fee (recycling fee) from responsible enterprises for recycling and related tasks. Since then, the recycling channels, processing equipment, and techniques for ELVs in Taiwan have gradually become established. This paper reviews the establishment of the ELV recycling system, analyzes the current system and its performance, and provides some recommendations for future development. The reduction of auto shredder residue (ASR) is a key factor in maximizing the resource recovery rate and recycling efficiency. The RFMB needs to provide strong economic incentives to further increase the recycling rate and to encourage the automobile industry to design and market greener cars.  相似文献   

3.
Increasing attention is currently given to the management of end-of-life (EoL) hybrid electric vehicles (HEVs), because approximately two decades have passed since they were first introduced to the market. A HEV would be one of the largest consumers of rare earth elements (REEs), and hence represents the greatest potential for REE recovery in the future. The purpose of this study is to clarify the present and future recovery potential of REEs that are disposed of as EoL HEVs. This study first estimated the numbers of EoL HEVs during fiscal years (FYs) 2010–2030, and then clarified the potential for recovery of REEs from two HEV-specific components—the hybrid transmission and NiMH battery unit. The results suggest that 0.51–0.65 million HEVs will reach the EoL stage in FY2030, compared with only 11,000 HEVs in FY2010. As of FY2030, REE recovery potentials will increase to 220 tons and 2900 tons for EoL hybrid transmission and NiMH battery units, respectively. A total of 49,000 tons of REEs will be contained within HEV-specific components of HEVs still in use. Moreover, the potential for recovery of REEs from EoL hybrid transmissions and NiMH battery units is estimated to equal 35.4 and 92.1 % of respective demand.  相似文献   

4.
Each European Member State must comply with Directive 2000/53/EC recycling and recovery targets by 2015, set to 85% and 95%, respectively. This paper reports a shredder campaign trial developed and performed in Italy at the beginning of 2008. It turns out to be the first assessment about the critical aspects belonging to the Italian End-of-Life Vehicles (ELVs) reverse supply chain involving 18 dismantling plants, a shredder plant and 630 ELV representatives of different categories of vehicles treated in Italy during 2006. This trial aims at improving the experimental knowledge related to ELVs added waste, pre-treatment, part reuse, recycling and final metal separation and car fluff disposal. Finally, the study also focuses on the calculation of the effective Italian ELV recycling rate, which results equal to 80.8%, and auto shredder residue (ASR) characterization. According to the results obtained in this work, ASR still contains up to 8% of metals and 40% of polymers that could be recovered. Moreover, physical-chemical analysis showed a Lower Heat Value of almost 20,000 kJ/kg and revealed the presence of pollutants such as heavy metals, mineral oils, PCBs and hydrocarbons.  相似文献   

5.
At the moment Automobile Shredder Residue (ASR) is usually landfilled worldwide, but European draft Directive 2000/53/CE forces the development of alternative solutions, stating the 95%-wt recovery of an End of Life Vehicle (ELV) weight to be fulfilled by 2015. This work describes two industrial tests, each involving 250-300 t of ELVs, in which different pre-shredding operations were performed. The produced ASR materials underwent an extended characterization and some post-shredding processes, consisting of dimensional, magnetic, electrostatic and densimetric separation phases, were tested on laboratory scale, having as main purpose the enhancement of ASR recovery/recycling and the minimization of the landfilled fraction. The gathered results show that accurate depollution and dismantling operations are mandatory to obtain a high quality ASR material which may be recycled/recovered and partially landfilled according to the actual European Union regulations, with particular concern for Lower Heating Value (LHV), heavy metals content and Dissolved Organic Carbon (DOC) as critical parameters. Moreover post-shredding technical solutions foreseeing minimum economic and engineering efforts, therefore realizable in common European ELVs shredding plants, may lead to multi-purposed (material recovery and thermal valorization) opportunities for ASR reuse/recovery.  相似文献   

6.
Automotive Shredder Residue (ASR) is a special waste that can be classified as either hazardous or non hazardous depending on the amount of hazardous substances and on the features of leachate gathered from EN12457/2 test. However both the strict regulation concerning landfills and the EU targets related to End-of-Life Vehicles (ELVs) recovery and recycling rate to achieve by 2015 (Directive 2000/53/EC), will limit current landfilling practice and will impose an increased efficiency of ELVs valorization. The present paper considers ELVs context in Italy, taking into account ASRs physical–chemical features and current processing practice, focusing on the enhancement of secondary materials recovery. The application in waste-to-energy plants, cement kilns or metallurgical processes is also analyzed, with a particular attention to the possible connected environmental impacts. Pyrolysis and gasification are considered as emerging technologies although the only use of ASR is debatable; its mixing with other waste streams is gradually being applied in commercial processes. The environmental impacts of the processes are acceptable, but more supporting data are needed and the advantage over (co-)incineration remains to be proven.  相似文献   

7.
Human exposure to lead (Pb) due to uncontrolled Pb-acid battery recycling has been an environmental health issue in newly developed industrial regions. We conducted a human monitoring survey in Dong Mai, a battery recycling village in Vietnam, to assess exposure status to Pb. Lead level was measured in hair, blood and urine samples of residents in Dong Mai and two reference sites during 4 years spanning 2007–2011. In Dong Mai, Pb levels in three matrixes were significantly higher than those in reference sites. Blood Pb levels of all adults and children exceeded 10 μg/dL, the Centers for Disease Control and Prevention definition of an elevated blood Pb level. Clear increase of urinary δ-aminolevulinic acid (ALA) level with increasing blood Pb level indicated disruption of heme synthesis. One adult exceeded 100 μg/dL of blood Pb, where encephalopathy is of concern. The blood Pb levels achieved various toxic effect threshold values, and elevated blood Pb was not limited to recycling workers, but was also in children and women of reproductive age. Serious pollution status of Dong Mai village suggests an importance of further monitoring surveys in various developing Asian countries.  相似文献   

8.
Floor dusts from Vietnamese end-of-life vehicle (ELV)-processing households were investigated to elucidate the contamination levels and exposure risk of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and dioxin-related compounds (DRCs). The concentrations were in order of PBDEs (260–11,000, median 280 ng/g overall) > PCBs (19–2200, median 140 ng/g) > dioxin-like PCBs (8.8–450, median 22 ng/g) ? polybrominated dibenzo-p-dioxin/dibenzofurans (PBDD/Fs, 2000–28,000, median 8500 pg/g) > polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs, 440–4100, median 1800 pg/g) > MoBPCDD/Fs (1.9–1200, median 250 pg/g). Concentrations of PCBs and DRCs were higher than those reported for Vietnamese urban houses, indicating ELV processing as a significant source of these contaminants. Higher concentrations of PCBs relative to PBDEs suggest the abundance of old electrical capacitors/transformers in ELVs. The PBDD/F and PCDD/F profiles were indicative of DecaBDE-containing materials and combustion sources, respectively. PBDFs, PCDFs and DL-PCBs were the most important dioxin-like toxic equivalent (TEQ) contributors. The estimated PCB and TEQ intake doses from dust ingestion approached or exceeded the reference doses for children living in some ELV-processing households, indicating potential health risk. More comprehensive risk assessment of the exposure to PCBs and DRCs is required for residents of informal ELV recycling sites.  相似文献   

9.
Directive 2000/53/EC sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a "waste-to-chemicals" perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.  相似文献   

10.
Electrical electronics constitute a significant quantity of municipal solid wastes which are discarded after use in open dumpsites especially in the developing countries. The aim of this study was to characterise the material and chemical components, evaluate current management practices and investigate recovery of lead from battery electrodes (BEs) of waste rechargeable electric lamps (RLs). Twenty-six waste RLs of different models were sampled in Nigeria and characterised. Their BEs were analysed for Pb, Cr, Mn, Cu, Zn, Ni and Fe after acid digestion. Questionnaires were distributed to unselected respondents to assess usage and disposal of the lamps. Reaction of citric acid solutions with Pb in the presence of H2O2 was used for the recovery of Pb. 69 % of the respondents disposed their waste RLs in open dumpsites. The mean ± SD concentrations of Pb, Cr, Mn, Cu, Zn, Ni and Fe in the BEs were 600 ± 0.2 g/kg, 65.4 ± 40 mg/kg, 5.05 ± 4.0 mg/kg, 6.81 ± 5.0 mg/kg, 5.98 ± 3.0 mg/kg, 50.0 ± 30 mg/kg and 40.2 ± 35 mg/kg, respectively. The results show that the batteries are lead-acid batteries which require management. At the optimal conditions of S/L = 0.14, temperature = 20 °C and leaching time = 5 h, about 95 % Pb was recovered in form of lead citrate from the battery. High recovery of Pb is possible with simple and environment-friendly reactions.  相似文献   

11.
我国报废汽车回收拆解企业发展的关键问题研究   总被引:1,自引:0,他引:1  
报废汽车回收拆解具有巨大的经济、环境和社会效益。我国报废汽车回收拆解企业正面临极佳的发展环境,但目前存在着诸多问题,需要进行转型升级。提出报废汽车回收拆解企业转型升级过程中存在的若干关键问题,即回收阶段中的报废汽车量预测、回收模式选择、报废汽车回收网络构建;拆解阶段中的拆解工艺选择、拆解设备选择;产品销售阶段中的产品分类及市场分析、销售模式确定及销售网络构建、产品定价等问题,并对这些问题进行分析,提供解决方法和措施。  相似文献   

12.
The present article analyses the current situation of End-of-Life-of-Vehicles (ELVs) management in Europe, with particular attention on Italian condition. Similarly to other European countries, metal recycling is the main activity of the whole system, but such situation is evolving due to the 2000/53/EC Directive, which sets out targets for Reuse, Recycling and Recovery of ELVs. Due to the relevance of the ELVs problem, in 2008 Italian Ministry of Environment subscribed a framework agreement with competent stakeholders as carmakers, dismantlers, shredders. The main result is an industrial plan to promote (amongst other objectives) technological progress for residual waste (Automotive Shredder Residue – ASR) treatment. According with Italian Trial 2006 analysis about ELVs, Reuse and Recycling rate is currently estimated to be about 81%.At the present time, dismantling plants constitute the first collection points for ELVs; for this reason, during 2009 an investigation has been done over a number of ten Authorized Treatment Facilities (ATFs) operating in Italy. The first step of the analysis was aimed to find out major practices and methods through observations of ATFs activities and interviews to operators. Furthermore, the depollution and dismantling treatments of about 70 different ELVs have been observed and timed in detail over a period of three months. The results included the identification of most relevant critical issues in ELVs treatment, such as distortions between scrapping activities and Directive’s regulation, and the assessment of the time and of the resources needed to perform each operation.In the second step of the survey, a process simulation model has been built on the basis of such data. The model was aimed to include the real variability and all the uncertainties that are typical of dismantling activities; it is intended as a tool for process layout planning and for its management. Some control parameters have been introduced; these are able to dynamically modify process path depending on ELVs queues and priorities. The model can also be used for the economic assessments of single operations or of the whole treatment activity.  相似文献   

13.
Sunflower residue, an agricultural waste material for the removal of lead (Pb) and cadmium (Cd) from aqueous solutions were investigated using a batch method. Adsorbent was prepared by washing sunflower residue with deionized water until the effluent was colorless. Batch mode experiments were carried out as a function of solution pH, adsorbent dosage, initial concentration and contact time. The results indicated that the adsorbent showed good sorption potential and maximum metal removal was observed at pH 5. Within 150 min of operation about 97 and 87 % of Pb and Cd ions were removed from the solutions, respectively. Lead and Cd sorption curves were well fitted to the modified two-site Langmuir model. The adsorption capacities for Pb and Cd at optimum conditions were 182 and 70 mg g?1, respectively. The kinetics of Pb and Cd adsorption from aqueous solutions were analyzed by fitting the experimental data to a pseudo-second-order kinetic model and the rate constant was found to be 8.42 × 10?2 and 8.95 × 10?2 g mg?1 min?1 for Cd and Pb, respectively. The results revealed that sunflower can adsorb considerable amount of Pb and Cd ions and thus could be an economical method for the removal of Pb and Cd from aqueous systems.  相似文献   

14.
With reference to the European regulation about the management of End-of-Life Vehicles (ELVs), Directive 2000/53/EC imposes the achievement of a recycling target of 85%, and 95% of total recovery by 2015. Over the last few years many efforts have been made to find solutions to properly manage the waste coming from ELVs with the aim of complying with the targets fixed by the Directive.This paper focuses on the economical evaluation of a treatment process, that includes physical (size and density), magnetic and electrical separations, performed on the light fraction of the automobile shredder residue (ASR) with the aim of reducing the amount of waste to dispose of in a landfill and enhancing the recovery of valuable fractions as stated by the EU Directive. The afore mentioned process is able to enhance the recovery of ferrous and non-ferrous metals of an amount equal to about 1% b.w. (by weight) of the ELV weight, and to separate a high energetic-content product suitable for thermal valorization for an amount close to (but not higher than) 10% b.w. of the ELV weight.The results of the economical assessment led to annual operating costs of the treatment ranging from 300,000 €/y to 350,000 €/y. Since the considered plant treats about 13,500 metric tons of ASR per year, this would correspond to an operating cost of approximately 20–25 €/t. Taking into account the amount and the selling price of the scrap iron and of the non magnetic metal recovered by the process, thus leading to a gain of about 30 €/t per ton of light ASR treated, the cost of the recovery process is balanced by the profit from the selling of the recovered metals. On the other hand, the proposed treatment is able to achieve the fulfillment of the targets stated by Directive 2000/53/EC concerning thermal valorization and reduce the amount of waste generated from ELV shredding to landfill.  相似文献   

15.
A beautiful and clean environment is the desire of every society. Malaysia is facing an uncontrolled increase in municipal solid waste (MSW) generation due to population growth, economic advancement, and industrialization, but the current, most common waste disposal practice of landfilling is not sustainable. The increasing standard of living also saps more energy from the power generation systems in which fossil fuels are the major source of fuel for the plants. Malaysia generates about 0.5–1.9 kg/capita/day of MSW; a total of about 25,000 tonnes/day of MSW is currently generated and is estimated to exceed 30,000 tonnes/day by 2020. Malaysian MSW is mainly composed of 45 % food waste, 24 % plastic, 7 % paper materials, 6 % metal, 4 % wood and 3 % glass, which are commingled, and is thus characterised by 52–66 % moisture content. Currently, 80–95 % of collected MSW is landfilled and 5 % is recycled, while composting and energy recovery are rarely practiced. This paper reviews the solid waste practice in Malaysia and looks into alternative management options for sustainability. Malaysia MSW represents recyclable power and energy potential if properly sorted. This study considered the practice of sorting at the source and the use of combustible MSW components as fuel to generate heat for a hybrid solar, flue gas, chimney power plant.  相似文献   

16.
Three different laboratory bioreactors, each duplicated, with dimensions 0.5 × 0.5 × 1 m were set up and monitored for 160 days. Municipal Solid Wastes with an organic content of ~80 % and a density of 550 kg/m3 were placed in bioreactors. Fresh leachate collected from waste collection vehicles was used with a recirculation rate of 28 L/day. Aerobic bioreactors were aerated at a rate of 0.15–0.24 L/min/kg of waste. Almost the same level of treatment was observed in terms of chemical oxygen demand reduction of leachate, which was in the range of 91–93 %. However, for anaerobic bioreactor, it took almost twice the time, 160 vs. 76 days, to reach the same level of treatment and stabilization. The behavior of semi-aerobic bioreactor was somewhere between the aerobic and anaerobic ones. Total biogas production for anaerobic bioreactors was 90 L/kg of waste, which contained 57–63 % methane. Methane concentration measured in semi-aerobic bioreactor was below 5 %. The main advantage of aerobic bioreactor was the fast rate of the process, while for semi-aerobic bioreactor, it was the elimination of the need for energy to maintain aerobic conditions, and for anaerobic bioreactor it was the production of biogas and potential energy recovery.  相似文献   

17.
End-of-life vehicles (ELV) have become a global concern as automobiles have become popular worldwide. An international workshop was held to gather data and to discuss 3R policies and ELV recycling systems, their background and present situation, outcomes of related policies and programs, the framework of recycling and waste management, and case studies on related topics in several countries and regions, as well as the essential points of the comparison. Legislative ELV recycling systems are established in the EU, Japan, Korea, and China, while in the US, ELV recycling is managed under existing laws on environmental protection. Since automobile shredding residue (ASR) has a high calorific value and ash content, and includes heavy metals as well as a mass of unclassified fine particles, recycling ASR is considered highly difficult. Countries with a legislative ELV system commonly set a target for recovery rates, with many aiming for more than 95 % recovery. In order to reach this target, higher efficiency in ASR recovery is needed, in addition to material recycling of collectable components and metals. Environmentally friendly design was considered necessary at the planning and manufacturing stages, and the development of recycling systems and techniques in line with these changes are required for sound ELV management.  相似文献   

18.
The Japanese Government introduced the Law on Recycling of End-of-Life Vehicles (ELV Recycling Law) in 2002. This law requires manufacturers to retrieve chlorofluorocarbons (CFCs), airbags, and automobile shredder residue (ASR) from ELVs and to properly recycle the remaining materials. This framework is compared with European ELV directives. Pilot-scale incineration plant testing has revealed a greater formation of by-product persistent organic pollutants (POPs) during the primary combustion of ASR compared to normal municipal solid waste. This may be attributed to the abundance of chlorine, Cu, and Fe in ASR, as Cu and Fe have been found to catalyze the formation of POPs under certain conditions. However, most by-product POPs were destroyed by the secondary combustion, and almost all were removed after flue gas treatment. The direct melting system is a shaft-type gasification and melting technology that has proved effective in many municipal solid waste applications. This system can be applied to ASR recycling for effective decomposition of brominated flame retardants and polybrominated dioxins.  相似文献   

19.
The transportation sector constitutes the major end-use market for aluminium-containing products and expectations for the future do indicate that aluminium will increase at 140 kg per vehicle. Moreover, up to 75 % aluminium recycled in Europe is used in transportation: thus, metal scrap recovered from ELVs is a key lever to act for closing material cycles. However, although the management chain of ELVs has an established procedure and aluminium scrap is usually recovered in shredding plants, a considerable fraction of the metal particles ends up in the light fraction called car fluff and is then landfilled. In this study we investigated potential of enhancing the recovery of aluminium scrap from the light fluff treatment. With this goal, the quantity of aluminium embedded in the Italian transport sector in the last 62 years was estimated, and a campaign of characterization in size and shape distribution of aluminium particles in the light fluff output has been carried out. The results estimated up to about 560,000 tons of metal are potentially recoverable from the treatment of light fluff at current operating conditions, but relevant improvements may be achieve when size and shape distribution criteria are adopt to implement eddy currents separation for a quantitative metal recovery.  相似文献   

20.
Construction and demolition debris (CDD) fines, a residue generated from mechanized CDD recycling, can often be beneficially reused. Concentrations of chemicals of potential concern in CDD fines should be evaluated prior to being reintroduced into the environment to assess risk and make informed decisions about appropriate reuse opportunities. The distribution of trace chemicals in CDD fines as a function of particle size was measured to evaluate if concentrations in the bulk material can be reduced by removing certain particle size ranges through screening. Chemicals of potential concern, including arsenic, lead, sulfate and polycyclic aromatic hydrocarbons (PAH), were characterized in four different size fractions (19–4.8 mm, 4.8–0.84 mm, 0.84–0.3 mm, < 0.3 mm) of CDD fine samples collected from 12 US CDD recycling facilities throughout the US. Results revealed that aluminum, arsenic and chromium concentrations were distributed evenly throughout all four size fractions. As for the remaining chemicals, most samples had lower concentrations in the 19–4.8 mm size range. In some samples and for certain chemicals, removal of the finer size fractions reduced overall concentrations in CDD fines, suggesting that additional processing may be worth further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号