首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The aim of this study was to evaluate the suitability of in vitro enzymatic methods for assaying the biodegradability of new starch-based biopolymers. The materials studied included commercial starch-based materials and thermoplastic starch films prepared by extrusion from glycerol and native potato starch, native barley starch, or crosslinked amylomaize starch. Enzymatic hydrolysis was performed using excessBacillus licheniformis -amylase andAspergillus niger glucoamylase at 37°C and 80°C. The degree of degradation was determined by measuring the dissolved carbohydrates and the weight loss of the samples. Biodegradation was also determined by incubating the samples in a compost environment and measuring the weight loss after composting. The results indicated that the enzymatic method is a rapid means of obtaining preliminary information about the biodegradability of starch-based materials. Other methods are needed to investigate more accurately the extent of biodegradability, especially in the case of complex materials in which starch is blended with other polymers.  相似文献   

2.
The hydrolytic and enzymatic degradation of newly developed hydrogels, produced by cross-linking purified poly(-glutamic acid) (PGA) with dihaloalkane compounds, was studied and is reported in this paper. Analysis of hydrolysis of the hydrogel as a function of pH indicated that the hydrolysis occurred slowly at neutral pH, but fast in both acidic and alkaline solutions, while the polymer could be hydrolyzed rapidly only in acidic solutions. The ester bonds were more sensitive to hydrolysis than peptide bonds. The biodegradability of the hydrogel and polymer was further confirmed when enzymatic degradation was studied by three enzymes (cathepsin B, pronase E, and trypsin), which were able to cleave both ester and peptide bonds gradually. A slow-release system for porcine somatotropin (pST) formed by using the hydrogel as matrix to entrap the hormone was evaluatedin vitro andin vivo. Results demonstrated that the hydrogel was able to release the hormone for a period of 20–30 days and indicated its potential application in slow-release systems for bioactive materials, especially macromolecules, such as peptides and proteins.  相似文献   

3.
Biodegradable polyesters were synthesized by ring-opening copolymerization of -butyrolactone (BL) and its derivatives withl-lactide (LLA). Although tetraphenyl tin was the main catalyst used, other organometallic catalysts were used as well.1H and13C NMR spectra showed that poly(BL-co-LLA)s were statistical and that their number-average molecular weights were as high as 7×104. The maximum BL content obtained from copolymerization BL/LLA was around 17%. TheT m andT g values of the copolymers showed a gradual depression with an increase in BL content. NoT m was obtained for the copolymers containing more than 13 mol% BL. The biodegradability of the copolyesters was evaluated by enzymatic hydrolysis and nonenzymatic hydrolysis tests. The enzymatic hydrolysis was carried out at 37°C for 24 h using lipases fromRhizopus arrhizus andR. delemar. Hydrolyses by both lipases showed that an increase in BL content of the copolymer resulted in enhanced biodegradability. Nonenzymatic accelerated hydrolysis of copolymers at 70°C was found to increase proportionally to their exposure time. The hydrolysis rate of these copolymers was considerably faster than that of PLLA. The higher hydrolyzability was recorded for the BL-rich copolymers. The copolymerization of -methyl--butyrolactone (MBL) or -ethyl--butyrolactone (EBL) with LLA resulted in relatively LA-rich copolymers.  相似文献   

4.
In the present project, twenty materials (e.g., polyhydroxybutyrate-hydroxyvalerate, polycaprolactone, cellulose acetate, polyacticacid, polyethylene), representing varied biodegradability levels were studied. An aerobic respirometric test, based on the CEN Draft, was setup. The biodegradability of each plastic film was evaluated by measuring the percentage of carbon converted into CO2 during 35 days. The values of the CO2 production were plotted versus days as a cumulative function. In order to reduce its number of points, the cumulative curve was modeled using a sigmoïd function (Hill sigmoïd). This model was compared to one found in the literature. A i 2 test showed that the biodegradation curve was more accurately fitted with the model than the previous one. Three kinetic parameters were determined by this Hill model: one represents the maximal percentage of carbon converted into CO2, the second the half-life time in days of the degrading part of the material and the third one the curve radius.In addition, the following analyses were carried out on each sample: elemental analysis, thickness, hydrophobicity and surface free energy measurements. In order to compress the information and to keep only relevant pieces, these parameters were submitted to a Principal Component Analysis. PCA found linear combinations of variables that describe major trends in the data. The two principal components which separate groups of materials were closely related to a chemical and a physical axis respectively. Materials showing a high biodegradability were related to high oxygen (and nitrogen) contents and low hydrophobicity: Material thickness did not influence the likeliness to biodegradability described by the maximum biodegradation rate. Finally, this study established the correlation between the biodegradation and the structure of biopolymers.  相似文献   

5.
Model oligo esters of terephthalic acid with 1,2-ethanediol, 1,3-propanediol, and 1,4-butanediol have been investigated with regard to their biodegradability in different biological environments. Well-characterized oligomers with weight-average molar masses of from 600 to 2600 g/mol exhibit biodegradation in aqueous systems, soil, and compost at 60°C. SEC investigations showed a fast biological degradation of the oligomer fraction consisting of 1 or 2 repeating units, independent of the diol component used for polycondensation, while polyester oligomers with degrees of polymerization higher than 2 were stable against microbial attack at room temperature in a time frame of 2 months. At 60°C in a compost environment chemical hydrolysis also degrades chains longer than two repeating units, resulting in enhanced degradability of the oligomers. Metabolization of the monomers and the dimers as well by the microorganisms could be confirmed by comparing SEC measurements and carbon balances in a Sturm test experiment. Based on these results degradation characteristics of potential oligomer intermediates resulting from a primary chain scission from copolyesters consisting of aromatic and aliphatic dicarbonic acids can be predicted depending on their composition. These results will have an evident influence on the evaluation of the biodegradability of commercially interesting copolyesters and lead to new ways of tailor-made designing of new biodegradable materials as well.  相似文献   

6.
Degradation of Cellulose Acetate-Based Materials: A Review   总被引:1,自引:0,他引:1  
Cellulose acetate polymer is used to make a variety of consumer products including textiles, plastic films, and cigarette filters. A review of degradation mechanisms, and the possible approaches to diminish the environmental persistence of these materials, will clarify the current and potential degradation rates of these products after disposal. Various studies have been conducted on the biodegradability of cellulose acetate, but no review has been compiled which includes biological, chemical, and photo chemical degradation mechanisms. Cellulose acetate is prepared by acetylating cellulose, the most abundant natural polymer. Cellulose is readily biodegraded by organisms that utilize cellulase enzymes, but due to the additional acetyl groups cellulose acetate requires the presence of esterases for the first step in biodegradation. Once partial deacetylation has been accomplished either by enzymes, or by partial chemical hydrolysis, the polymer’s cellulose backbone is readily biodegraded. Cellulose acetate is photo chemically degraded by UV wavelengths shorter than 280 nm, but has limited photo degradability in sunlight due to the lack of chromophores for absorbing ultraviolet light. Photo degradability can be significantly enhanced by the addition of titanium dioxide, which is used as a whitening agent in many consumer products. Photo degradation with TiO2 causes surface pitting, thus increasing a material’s surface area which enhances biodegradation. The combination of both photo and biodegradation allows a synergy that enhances the overall degradation rate. The physical design of a consumer product can also facilitate enhanced degradation rate, since rates are highly influenced by the exposure to environmental conditions. The patent literature contains an abundance of ideas for designing consumer products that are less persistent in the outdoors environment, and this review will include insights into enhanced degradability designs.  相似文献   

7.
The biodegradability of poly--hydroxybutyrate (PHB), poly--hydroxybutyrate-co-valerate (PHB-V) and poly--caprolactone (PCL) were examined following thermal aging in an oven for 192, 425 and 600 h. Different temperatures, 100, 120 and 140°C for PHB and PHB-V and 30, 40 and 50oC for PCL were used to assess the influence of this parameter on biodegradation. The biodegradability tests were done in soil compostage at pH 11.0 and involved measuring the residual mass of polymer. Thermal analysis of the polymers was done using a differential scanning calorimeter (DSC). The melting temperature and crystallinity were also determined. Thermal ageing increased the biodegradability only for PHB at 120 and 140oC, and there was no correlation between crystallinity and the biodegradation of the polymers.  相似文献   

8.
The biodegradability of a multicomponent system based on biotechnological occurring polyester (poly(-hydroxybutyrate-co--hydroxyvalerate) (PHBV)) with inclusion of acrylate elastomer (polybutylacrylate) (PBA) was investigated. A bacterium which produced extracellular enzymes that degrades PHBV even when blended with PBA was isolated and tentatively designated asAureobacterium saperdae. It was observed, by morphological investigation, that, while the bacterial degradation was permitted for PBA content of 20% by weight, it was inhibited for PBA content of 30%, owing to the occurrence of a rubbery layer that prevents to the bacteria an easy accessibility in the PHBV-rich regions. In fact, owing the bacterial growth, only PHBV was metabolized, whereas no degradation of PBA was detected for blend samples. It was confirmed that the degradation proceeded via surface erosion of PHBV also in the blends. Finally, mechanical tests on PHBV/PBA specimens as a function of degradation extent have shown different behavior of the blends at different the PBA content. Thermal analysis of blends and PHBV has been reported, too  相似文献   

9.
Two types of enzymatic reactions are given here as examples of synthetic problems encountered in industry. In the first case, commercially available -D-galactosidase from Escherichia coli was used as a catalyst to transfer galactose from -lactose to oligosaccharides. A preference for galactosyl transfer to the 3- or 4-position of the sugar moiety of the oligosaccharide was observed for the products. As expected, only the -anomer was produced. A wide variety of sugars, including disaccharides, trisaccharides, cellotetraose, and maltodextrins, has been shown to act as acceptors, yielding oligosaccharides. In the second example, -galactomannan that had been previously treated to contain cationic groups (cationic guar gum) was subjected to treatment with a series of inexpensive commercial enzymes such as lipases, protease, and cellulases. Some enzyme preparations showed significant changes in the viscosities of 1% cationic guar solution. For example, lipases from Aspergillus niger and Aspergillus saitoi and protease XIII from Rhizopus niveus produced a substantial viscosity reduction (0–20% of original viscosity). These examples demonstrate the utility of low-cost enzymes in manipulating polymer structures.  相似文献   

10.
The extracellular poly(-hydroxybutyrate) (PHB) depolymerase of Aspergillus fumigatus Pdf1 was purified by a new, simple, one-step affinity chromatography method using the substrate PHB. The purified enzyme was glycosylated, with the molecular mass of 40 KD, and exhibited a novel self-aggregation behavior by means of hydrophobic interaction that was resolved by Triton X-100 (TX-100) pretreatment of enzyme and also TX-100 incorporation in the native gel. The apparent K m value of purified enzyme for PHB was 119 g/mL and 3-hydroxybutyrate was detected as the main endproduct of PHB hydrolysis. The depolymerase was insensitive to phenylmethyl sulfonyl fluoride (PMSF), sodium azide, ethylenediaminetetraacetic acid (EDTA), and para-chloromercuric benzoic acid (PCMB), but was inactivated by dithioerythritol (DTT) and showed specificity for short chain-length poly(-hydroxyalkanoates) (PHAs) such as PHB, poly(hydroxyvalerate) (PHV), and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Medium-chain-length PHA failed to get hydrolyzed. The enzyme, however, exhibited strong cross reactivity with the Comamonas sp. PHB depolymerase antibodies, but not with PHV depolymerase antibodies of Pseudomonas lemoignei. Southern hybridization and dot blot analysis of A. fumigatus Pdf1 genomic DNA with alkaline phosphatase labeled probes of P. lemoignei PHB and PHV depolymerase genes revealed no homology, although the enzyme hydrolyzed both PHB and PHV.  相似文献   

11.
This paper gives an overview of the methods used at the Technical Research Centre of Finland (VTT) for the biodegradability testing of solid polymers and packaging materials. Biodegradability of each polymer included in the packaging material should be separately tested. Aquatic aerobic and anaerobic tests and, in specific cases, enzymatic tests are used for screening purposes. The application of aquatic aerobic tests—an automated Sturm test (OECD 301B; ASTM D5209) and a VTT headspace test as well as an anaerobic test (ASTM D5210)—is discussed. Three composting tests and their applications are summarized. These tests are regarded as important because they can be used to simulate the biodegradability under real-life conditions. Several tests are needed to determine the fate of the polymer under real conditions and to study its biodegradability in different environments. The time needed for complete biodegradation of polymers in nature is impossible to predict with laboratory tests and should be studiedin vivo.According to the lecture given in Sweden at the Royal Institute of Technology, at a workshop on polymers from renewable resources and their degradation, November 10–11, 1994.  相似文献   

12.
The bacterial polyester, poly(-hydroxybutyrate-co--hydroxyvalerate) (PHB/V), was cross-linked with 1, 5, 7, 10, 20, and 30 wt% benzoyl peroxide by thermal decomposition reactions. Solvent extractions were carried out to determine the cross-linked fractions of the films. The sol/gel data were used to estimate cross-link densities. Films of PHB/V cross-linked with 10% benzoyl peroxide were placed in contact with purified depolymerase A secreted byP. lemoignei. These samples exhibited weight loss rates which were half that of un-cross-linked PHB/V, but the network was degraded completely by the enzyme. The results of this study suggest that anendo-type enzymatic degradation may occur, in addition to theexo-type activity, which is normally presumed to occur with theP. lemoignei depolymerase system.  相似文献   

13.
As one of the biodegradable polymers, the blend of poly(butylene succinate) and poly(butylene terephthalate) is dealt with in this study. In our previous work, it was demonstrated that PBS and PBT are immiscible not only from the changes of T g but also from logG–log G plots. It is expected that the biodegradability of the blends could be improved by enhancing the miscibility. We tried to induce the transesterification reaction between two polyesters with various time intervals to enhance the miscibility of the blends. The extent of transesterification reaction was examined by 1H-NMR. We utilized a dynamic mechanical thermal analyzer and a rotational rheometer to investigate the changes in miscibility. We also verified the biodegradability of PBS/PBT blends after the transesterification reaction by the composting method.  相似文献   

14.
The in vitro degradation of fiber from two agricultural residues (Helianthus annuus and Zea mays) was studied using four saprophytic fungi. The changes in cellulolytic enzyme and phosphatase activities, the C/N ratio, the dry weight, the crude fiber (CF) content, and the protein and fiber digestibility coefficients were investigated in solid-state culture during a 45-day period of biodegradation. The FPase activity of Phanerochaete chrysosporium and the endoglucanase activities of P. chrysosporium and Trichoderma reesei compared to those of the other fungi were significantly (P < 0.05) high on both crop resides. Both acid and alkaline phosphatases were produced in greater amounts by P. chrysosporium than by the other fungi. The organic carbon contents of both residues were reduced more by T. reesei than by the other fungi. The fiber digestibility coefficient of untreated corn residue was higher than that of sunflower residue, but after treatment with fungi, the sunflower fiber digestibility increased more than that of corn did. Although the CF contents of both residues were decreased more by P. chrysosporium than by T. reesei, the fiber digestibility coefficients of both residues were increased more by T. reesei than by P. chrysosporium. The treatment of both crop residues increased their protein digestibility coefficients significantly compared to the control. The protein digestibility coefficients of both residues were increased more by T. reesei and P. chrysosporium than by the other fungi. In all treatments, the protein digestibility coefficient of sunflower residue was higher than that of corn residue.  相似文献   

15.
The degradation of cellulosic materials, differing mainly in the degree of polymerization and the number of reducing end groups, was studied under the alkaline conditions similar to those existing in a cementitious repository for low- and intermediate-level radioactive waste (pH 13.3, T = 25°C). The kinetics of alkaline degradation (peeling-off reaction) were studied and the data analyzed by the model of Haas et al. [13]. The observed kinetic parameters for the propagation reaction and overall stopping reaction were compared with literature data. Although measured under different experimental conditions, literature data and data from this study show a consistent picture. Differences in the extent of degradation observed for the different cellulosic materials could be satisfactorily explained by differences in reducing end group content and, consequently, by differences in the degrees of polymerization. Besides the number of reducing end groups, the degree of amorphousness also plays an important role. The main degradation products formed under the experimental conditions used are - and -(gluco)isosaccharinic acid. This is in agreement with many other studies on alkaline degradation of cellulose. The two isomers are formed in roughly equal amounts.  相似文献   

16.
This work compares the biodegradability of polyesters produced by an esterification reaction between glycerol and oleic di-acid (D 18:1) issued from green chemical pathways, via either classical thermo-chemical methods, or an enzymatic method using the immobilized lipase of Candida antartica B (Novozym 435). An elastomeric polymer synthesized by enzymatic catalysis is more biodegradable than an elastomeric thermo-chemical polyester synthesized by a standard chemical procedure. This difference lies in percentage of the dendritic motifs, in values of the degree of substitution, and certainly in cross-links inducing an hyper-branched structure less accessible to the lipolytic enzymes in a waste treatment plant. However, when the elastomeric polymer synthesized by enzymatic catalysis is processed at high temperature as required for certain industrial applications, it presents an identical rate of biodegradation than the chemical polyester. The advantages of the thermo-chemical methods are greater speed and lower cost. Enzymatic synthesis appears be suited to producing polyesters, devoid of metallic catalysts, which must be used without processing at high temperature to keep a high biodegradability.  相似文献   

17.
A simple method was developed for the preparation of an autoclavable, long-side-chain poly (-hydroxyalkanoate) (LSC-PHA) colloidal suspension, which was used as a substrate for enzymatic degradation and to prepare agar overlay plates for the isolation of microorganisms producing extracellular LSC-PHA depolymerase. Six cultures producing extracellular LSC-PHA depolymerase were isolated from a composted hydrocarbon-contaminated soil. All were pseudomonads or related bacteria. All (with the possible exception ofXanthomonas maltophilia) could produce LSC PHA. Except forX. maltophilia none could hydrolyze poly (-hydroxybutyrate). Screening of sevenPseudomonas strains known to accumulate LSC PHA showed that all were negative for extracellular LSC-PHA depolymerase production. It was concluded that extracellular LSC-PHA depolymerase producers are found mostly in the genusPseudomonas but that they are relatively uncommon.  相似文献   

18.
Microwave radiation was used as the energy source for various types of chemical derivatizations of polysaccharides and for the synthesis of biodegradable polyesters in solvent-free or aqueous-based reaction systems. A medium to high degree of substitution was obtained for starch acetates, starch succinates, carboxymethyl konjac, aminated starch, and aminated chitosan. Ring-opening polymerization of lactide and -caprolactone proceeded rapidly even at low power output in the presence of tin octanoate catalyst. Complete monomer conversion and high molecular weight were achieved in less than 6 minutes under nonisothermal conditions. The yield rapidly increased with increasing power output and showed no significant change in a wide range of batch sizes. Polycaprolactone was successfully grafted from starch and konjac acetate in 3 minutes, yielding as high as 24% grafting efficiency and 25% grafting degree.  相似文献   

19.
The biodegradation of electrospun nano-fibers of poly(-caprolactone) (PCL) was initially investigated with respect to the environmental application of PCL non-woven fabrics, using pure-cultured soil filamentous fungi, Aspergillus oryzae, Penicillium caseicolum, P. citrinum, Mucor sp., Rhizopus sp., Curvularia sp., and Cladosporium sp. Three kinds of non-woven PCL fabrics with different mean fiber diameters (330, 360, and 510 nm) were prepared by changing the viscosities of the pre-spun PCL solutions (150, 210, and 310 cPs, respectively). All of the pure-line soil filamentous fungi tested grew on the two fiber materials. Electron microscopy was used to observe the biodegradation processes revealing remarkable growth of two fungi, Rhizopus sp. and Mucor sp., along with the accompanying collapse of the nano-fiber matrices. In the biochemical oxygen demand (BOD) test, the biodegradation of the 330 nm PCL nano-fibers by Rhizopus sp. and Mucor sp. exceeded 20 and 30% carbon dioxide generation, respectively. The biodegradability of the PCL non-woven fabrics decreased with the mean fiber diameter and the 330 nm PCL nano-fiber that was made from 150 cPs solution (concentration, 7 wt%) exhibited the highest biodegradability. These results might offer some clues for the applications of the PCL non-woven fabrics having the controlled biodegradability in the environmental uses.  相似文献   

20.
A block copolymer {P[(R,S)-HB-b-EG]} of atactic poly[(R,S)-3-hydroxybutyrate] {P[(R,S)-HB]} and poly(ethylene glycol) (PEG) was prepared by the ring-opening polymerization of -butyrolactone in the presence of a macroinitiator (PEG/ZnEt2/H2O) which had been produced by the reaction of ,-dihydroxy PEG ( n=3000) with ZnEt2/H2O (1/0.6) catalyst. The block copolymer ( n=10,500, w/ n=1.2) was an A-B-A triblock copolymer comprising atactic P[(R,S)-HB] (A) and PEG (B) segments. The miscibility, physical properties, and biodegradability of binary blends of microbial poly[(R)-3-hydroxybutyrate] {P[(R)-HB]} with the block copolymer P[(R,S)-HB-b-EG] has been studied. The glass-transition temperature (T g) data showed that the P[(R)-HB]/P[(R,S)-HB-b-EG] blend was miscible in the amorphous state. The P[(R)-HB] film became flexible and tough by means of blending with P[(R,S)-HB-b-EG] block copolymer. The enzymatic degradation of blend films was carried out at 37°C and pH 7.4 in a 0.1M phosphate solution of an extracellular PHB depolymerase fromAlcaligenes faecalis. The enzymatic degradation took place solely on the surface of the blend films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号