首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to determine the composition and production rate of medical waste from the health care facility of social insurance institute, a small waste producer in Xanthi, Greece. Specifically, produced medical waste from the clinical pathology (medical microbiology) laboratory, the X-ray laboratory and the surgery and injection therapy departments of the health facility was monitored for six working weeks. A total of 240 kg medical solid waste was manually separated and weighed and 330 L of liquid medical waste was measured and classified. The hazardous waste fraction (%w/w) of the medical solid waste was 91.6% for the clinical pathology laboratory, 12.9% for the X-ray laboratory, 24.2% for the surgery departments and 17.6% for the injection therapy department. The infectious waste fraction (%w/w) of the hazardous medical solid waste was 75.6% for the clinical pathology laboratory, 0% for the X-ray laboratory, 100% for the surgery departments and 75.6% for the injection therapy department. The total hazardous medical solid waste production rate was 64 ± 15 g/patient/d for the clinical pathology laboratory, 7.2 ± 1.6 g/patient/d for the X-ray laboratory, 8.3 ± 5.1 g/patient/d for the surgery departments and 24 ± 9 g/patient/d for the injection therapy department. Liquid waste was produced by the clinical pathology laboratory (infectious-and-toxic) and the X-ray laboratory (toxic). The production rate for the clinical pathology laboratory was 0.03 ± 0.003 L/patient/d and for the X-ray laboratory was 0.06 ± 0.006 L/patient/d. Due to the small amount produced, it was suggested that the most suitable management scheme would be to transport the hazardous medical waste, after source-separation, to the Prefectural Hospital of Xanthi to be treated with the hospital waste. Assuming this data is representative of other small medical facilities, medical waste production can be estimated for such facilities distributed around Greece.  相似文献   

2.
In the present study, the quantities of infectious medical wastes, generated from 12 public hospitals supervised by the 2nd Health Region Administration of Central Macedonia, Northern Greece, were calculated at a very disaggregated level for the first time and were compared to other reported characterization studies. Data was recorded by using an appropriately designed questionnaire, which was completed for each day of one week, in every department, clinic, unit or laboratory of each one of the 12 aforementioned hospitals. Afterwards, average generation indexes were determined in relation to certain important organizational and functional factors, such as the number of beds, bed coverage, the different hospital sections and wards, and the type of hospital. The way that sources of infectious wastes, generated from hospitals, vary by ward and department, was also illustrated and the most important sources were identified. Generated infectious hospital wastes vary from 0.26 to 0.89 kg/bed/day or 0.51 to 1.22 kg/patient/day, excluding the three specialised hospitals of the Health Region. The total amount of medical waste generated from the 2nd Health Region (only public hospitals) was estimated to be 691 tonnes/yr or 0.73 kg/cap/yr.  相似文献   

3.
Environmentally safe disposal of end-of-life (EoL) or discarded mobile phone is a serious problem on account of their ever increasing number and toxic metals contents. In the present work, metal toxicity of mobile phone plastics, printed wire boards (PWBs) and batteries were assessed through dynamic batch leaching using Milli Q (MQ) water. Phone plastics failed Toxicity Characterization Leaching Procedure (TCLP) and Waste Extraction Test (WET) for Pb as the cumulative amount of Pb leached from plastics (5.33 mg/l) exceeded the regulatory limits (5.0 mg/l) used in characterizing a waste as hazardous. Similarly, the average cumulative amount (21.83 mg/l) of Ni leached from PWBs exceeded the regulatory limit of 20 mg/l and thus PWBs failed WET. Metals leached from batteries in small amounts (Cr: 0.40 mg/l and Ni: 0.15 mg/l). The presence of Fe in the batteries and its precipitation as oxides/hydroxides in the leaching solution hindered the leaching of other metals in MQ water. Both plastics and PWBs should be treated as hazardous waste and should not be disposed in open landfills. Further, MQ water leaching could provide good simulation of metals leaching from the mobile phones disposed at landfill sites.  相似文献   

4.
This study investigated the type and amount of medical waste generated from small clinical facilities in Taiwan. We sampled 200 small medical establishments, with few or no patient beds, to survey the wastes generated and disposed. The surveyed medical facilities consisted of four groups including private clinics, medical laboratories, blood centers and public clinics. Private clinics providing surgical, dental, obstetrical, and dialysis services were included in this survey because they may generate higher amounts of infectious waste than other specialties. The overall mean general waste production rate was 3.97 kg/bed/day (or 0.075 kg/patient/day) at all the surveyed facilities, higher than that obtained from larger hospitals in Taiwan, which ranged from 2.41 to 3.26 kg/bed/day. The highest amount of infectious wastes generated among the four groups of facilities were from blood centers (3.14 kg/bed/day), followed by private clinics, medical laboratories and public clinics (1.91, 1.07, and 0.053 kg/bed/day, respectively). The overall average was 2.08 kg/bed/day. This study suggests that the waste generated at small medical facilities ranged widely.  相似文献   

5.
Medical waste management is of great importance due to its infectious and hazardous nature that can cause undesirable effects on humans and the environment. The objective of this study was to analyze and evaluate the present status of medical waste management in the light of medical waste control regulations in Nanjing. A comprehensive inspection survey was conducted for 15 hospitals, 3 disposal companies and 200 patients. Field visits and a questionnaire survey method were implemented to collect information regarding different medical waste management aspects, including medical waste generation, segregation and collection, storage, training and education, transportation, disposal, and public awareness.The results indicated that the medical waste generation rate ranges from 0.5 to 0.8 kg/bed day with a weighted average of 0.68 kg/bed day. The segregated collection of various types of medical waste has been conducted in 73% of the hospitals, but 20% of the hospitals still use unqualified staff for medical waste collection, and 93.3% of the hospitals have temporary storage areas. Additionally, 93.3% of the hospitals have provided training for staff; however, only 20% of the hospitals have ongoing training and education. It was found that the centralized disposal system has been constructed based on incineration technology, and the disposal cost of medical waste is about 580 US$/ton. The results also suggested that there is not sufficient public understanding of medical waste management, and 77% of respondents think medical waste management is an important factor in selecting hospital services.The problematic areas of medical waste management in Nanjing are addressed by proposing some recommendations that will ensure that potential health and environmental risks of medical waste are minimized.  相似文献   

6.
Garden waste generation and composition were studied in Aarhus, Denmark. The amount of garden waste generated varied seasonally, from 2.5 kg person?1 month?1 in winter to 19.4 kg person?1 month?1 in summer. Seasonal fractional composition and chemical characterization of garden waste were determined by sorting and sampling garden waste eight times during 1 year. On a yearly basis, the major fraction of garden waste was “small stuff” (flowers, grass clippings, hedge cuttings and soil) making up more than 90% (wet waste distribution) during the summer. The woody fractions (branches, wood) are more significant during the winter. Seasonal trends in waste chemical composition were recorded and an average annual composition of garden waste was calculated, considering the varying monthly generation and material fraction composition: the wet garden waste contained 40% water, 30% organic matter (VS) and 30% ash. The ash content suggests that the garden waste contains a significant amount of soil. This is in particular the case during summer. Of nutrients, the garden waste contained in average on a dry matter basis 0.6% N, 0.1% P, and 1.0% K. However, the contents varied significantly among the fractions and during the year. The content of trace elements (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) was low.  相似文献   

7.
The application of on-site waste treatment significantly reduces the need for expensive waste collection and transportation in rural areas; hence, it is considered of fundamental importance in developing countries. In this study, the effects of in-field operation of two types of mini-scale on-site solid waste treatment facilities on de-centralized communities, one using mesophilic two-phase anaerobic digestion combined with composting (TPAD, 50 kg/d) and another using decentralized composting (DC, 0.6–2 t/d), were investigated. Source-separated collection was applied to provide organic waste for combined process, in which the amount of waste showed significant seasonal variation. The highest collection amount was 0.18 kg/capital day and 0.6 kg/household day. Both sites showed good performance after operating for more than 6 months, with peak waste reduction rates of 53.5% in TPAD process and 63.2% in DC process. Additionally, the windrow temperature exceeded 55 °C for >5 days, indicating that the composting products from both facilities were safe. These results were supported by 4 days aerobic static respiration rate tests. The emissions were low enough to avoid any impact on nearby communities (distance <100 m). Partial energy could be recovered by the combined process but with complicated operation. Hence, the choice of process must be considered in case separately.  相似文献   

8.
Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city’s urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007).The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita?1 day?1. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).  相似文献   

9.
One methodology is proposed to estimate the quantification and composition of building-related construction and demolition (C&D) waste in a fast developing region like Shanghai, PR China. The varieties of structure types and building waste intensities due to the requirement of progressive building design and structure codes in different decades are considered in this regional C&D waste estimation study. It is concluded that approximately 13.71 million tons of C&D waste was generated in 2012 in Shanghai, of which more than 80% of this C&D waste was concrete, bricks and blocks. Analysis from this study can be applied to facilitate C&D waste governors and researchers the duty of formulating precise policies and specifications. As a matter of fact, at least a half of the enormous amount of C&D waste could be recycled if implementing proper recycling technologies and measures. The appropriate managements would be economically and environmentally beneficial to Shanghai where the per capita per year output of C&D waste has been as high as 842 kg in 2010.  相似文献   

10.
The aim of this study was to validate the visual estimation method for aggregated plate waste of main dish at Portuguese primary school canteens. For this purpose plate waste at school lunch was measured for 505 individual servings, using weighing individual servings and plate waste and visual estimation method by a 6-point scale, as developed by Comstock et al. (1981). A high variability of initial serving weights was found with serving sizes ranging from 88.9 to 283.3 g and with a coefficient of variation ranging from 5.5% to 24.7%. Mean plate waste was 27.5% according to the weighing method. There was a significant bias in the conversion of the visual waste estimations to actual waste, being overestimated by an average of 8.0 g (ranging from ?12.9 g to 41.4 g). According to Bland and Altman plot, the mean difference between methods was of 8.0 g and the amplitude interval was 102.6 g. The study showed that the visual estimation method is not as accurate as the weighing method in assessing nonselective aggregated plate waste at primary school canteens. Our findings are thus very important on considering plate waste assessment, since the wide variation on initial servings introduces a relevant bias when considering standard portions or a random sample of initial servings. Although, greater convenience, time-saving and the possibility to monitor plate waste of large groups, make the visual estimation method an important method to assess plate waste at school canteens, these results highlighted the need of portions standardization and control of initial servings to allow for its use.  相似文献   

11.
The influence of pH on the leaching behaviour of air pollution control (APC) residues produced in municipal solid waste incineration (MSWI) is addressed in this study. The residue is considered hazardous waste, and in accordance with their chemical properties, the leaching of contaminants into the environment is the main concern. Several leaching tests can be used for research studies or regulatory purposes, where a wide variety of conditions may be tested. Our work deals mainly with the leaching behaviour of toxic heavy metals (Pb, Cd, Zn, Cr, Ni, Cu) and inorganics associated with soluble salts (Na, K, Ca, Cl). The main goal is to obtain an overview of the leachability of APC residues produced in a Portuguese MSWI process. Among the different variables that may have influence on the leaching behaviour, pH of the leachant solution is the most important one, and was evaluated through pH static tests. The acid neutralization capacity (ANC) of the residue was also determined, which is in the range of 6.2–6.8 meq g?1 (for pH = 7) and 10.1–11.6 meq g?1 (for pH = 4). The analysis of the leaching behaviour is particularly important when the leaching is solubility controlled. The amphoteric behaviour of some elements was observed, namely for Pb and Zn, which is characterized through high solubilization at low and high pH and moderate or low solubility at neutral or moderate high pH. The solubility curves for Pb, Cd, Zn, Cr, Ni and Cu as a function of pH were obtained, which are very useful for predicting the leaching behaviour in different scenarios. The solubility of K and Na reveals to be nearly independent of the solution pH and the released amount is mainly availability-controlled. Moreover, the pH static test showed that Cl? is the most pH-independent species. The APC residue turns out to be a hazardous waste because of the high leaching of lead and chloride. On the other hand, leaching of elements like cadmium, nickel and copper is limited by the high pH of the residue, and as long as the waste keeps its ANC, the risk of mobilization of these elements is low.  相似文献   

12.
Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.  相似文献   

13.
Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample’s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 × 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34 × 105 t-CO2/y).  相似文献   

14.
Due to the amounts of chromium in the leachate resulting from leather leaching tests, chromium sulfate tanned leather wastes are very often considered hazardous wastes. To overcome this problem, one option could be recovering the chromium and, consequently, lowering its content in the leather scrap. With this objective, chromium leather scrap was leached with sulfuric acid solutions at low temperature also aiming at maximizing chromium removal with minimum attack of the leather matrix. The effects of leather scrap dimension, sulfuric acid and sodium sulfate concentration in the solutions, as well as extraction time and temperature on chromium recovery were studied, and, additionally, organic matrix degradation was evaluated. The best conditions found for chromium recovery were leather scrap conditioning using 25 mL of concentrated H2SO4/L solution at 293 or 313 K during 3 or 6 days. Under such conditions, 30–60 ± 5% of chromium was recovered and as low as 3–6 ± 1% of the leather total organic carbon (TOC) was dissolved. Using such treatment, the leather scrap area and volume are reduced and the residue is a more brittle material showing enhanced anaerobic biodegradability. Although good recovery results were achieved, due to the fact that the amount of chromium in eluate exceeded the threshold value this waste was still hazardous. Thus, it needs to be methodically washed in order to remove all the chromium de-linked from collagen.  相似文献   

15.
This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8–0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.  相似文献   

16.
The production potential of refuse derived fuel (RDF) in the largest industrial city of Korea is discussed. The purpose of this study is to evaluate the energy potential of the RDF obtained from utilizing combustible solid waste as a fuel resource. The total amount of generated solid waste in the industrial city was more than 3.3 million tonnes, which is equivalent to 3.0 tonnes per capita in a single year. The highest amount of solid waste was generated in the city district with the largest population and the biggest petrochemical industrial complex (IC) in Korea. Industrial waste accounted for 89% of the total amount of the solid waste in the city. Potential RDF resources based on combustible solid wastes including wastepaper, wood, rubber, plastic, synthetic resins and industrial sludge were identified. The amount of combustible solid waste that can be used to produce RDF was 635,552 tonnes/yr, consisting of three types of RDF: 116,083 tonnes/yr of RDF-MS (RDF from municipal solid waste); 146,621 tonnes/yr of RDF-IMC (RDF from industrial, municipal and construction wastes); and 372,848 tonnes/yr of RDF-IS (RDF from industrial sludge). The total obtainable energy value from the RDF resources in the industrial city was more than 2,240,000 × 106 kcal/yr, with the following proportions: RDF-MS of 25.6%, RDF-IMC of 43.5%, and RDF-IS of 30.9%. If 50% or 100% of the RDF resources are utilized as fuel resources, the industrial city can save approximately 17.6% and 35.2%, respectively, of the current total disposal costs.  相似文献   

17.
In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50 °C for 24 h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2–8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash.  相似文献   

18.
The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150 °C under argon gas flowing at 1 L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ~30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally sustainable solution to the management of waste products.  相似文献   

19.
Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d?1), 54.6% of total recyclable wastes (51.49 ton d?1) and 68.29% of readily recyclable wastes (41.19 ton d?1). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns.  相似文献   

20.
The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of US$ 0.12 kg?1 for the waste treated with microwaves, US$ 1.10 kg?1 for the waste treated by the autoclave and US$ 1.53 kg?1 for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号