首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
Waste paper samples made from newsprint, copier paper, and magazine paper, as well as samples of kraft pulp and thermomechanical pulp, were pretreated with ozone to improve enzymatic hydrolysis. The ozone treatment of pulps of newsprint and of magazine paper increased the specific surface areas and total pore volumes while decreasing the lignin content so that these values became similar to those of thermomechanical pulps. These morphological and chemical changes in the pulps resulted in the increased access of cellulase to the pulp fiber surface and increased enzymatic hydrolysis. For copier paper, in which the lignin content was very low, additives on the pulp fiber surface were oxidized and removed by ozone treatment and extraction, and this allowed improved enzymatic hydrolysis. In contrast, surface areas and total pore volumes of kraft pulp and bleached kraft pulp were decreased by the ozone treatment, resulting in morphological changes in the pulps that decreased enzymatic hydrolysis.  相似文献   

2.
Carbon fibers have been produced from hardwood lignin/synthetic polymer blend fibers. Hardwood kraft lignin was thermally blended with two recyclable polymers, poly(ethylene terephthalate) (PET) and polypropylene (PP). Both systems were easily spun into fibers. A thermostabilization step was utilized prior to carbonization to prevent fusion of individual fibers. For the lignin-based carbon fibers, careful control of heating rate was required. However, PET–lignin blend fibers can be thermostabilized under higher heating rates than the corresponding homofibers. Carbon fiber yield decreased with increasing incorporation of synthetic plastic. However, carbon fiber yield obtained for a 25% plastic blend fiber was still higher than that generally reported for petroleum pitch. Blend composition also affected surface morphology of the carbon fibers. Immiscible lignin–PP fibers resulted in a hollow and/or porous carbon fiber; whereas carbon fiber produced from miscible lignin–PET fibers have a smooth surface. Synthetic polymer blending also affected the mechanical properties of the fibers, especially MOE; lignin-based carbon fiber properties improved upon blending with PET.  相似文献   

3.
Biocomposites from soy based bioplastic and chopped industrial hemp fiber were fabricated using twin-screw extrusion and injection molding process. Soy based bioplastics were prepared through cooking with plasticizer and blending with biodegradable poly(ester amide). Mechanical, thermal properties and fracture surface morphology of the “green”/biocomposites were evaluated with universal testing system (UTS), dynamic mechanical analysis (DMA), Environmental Scanning Electron Microscopy (ESEM). It was found that the tensile strength and modulus, flexural strength and modulus, impact strength and heat deflection temperature of industrial hemp fiber reinforced biocomposites significantly improved. The fracture surfaces showed no signs of matrix on the fiber surface suggesting poor interfacial adhesion.  相似文献   

4.
This work investigates the potentials of lemon balm (Melissa officinalis L.) stalk (LBS), a massive waste part of medicinal plant, for pulp and papermaking by assessing its fiber characteristics and chemical composition. In addition, LBS properties were compared with some important agro-residues such as bagasse stalk (BS), cotton stalk (CS) and tobacco stalk (TS). There is no information about suitability of the LBS in the open literature. Chemically, LBS fibers contain a relatively high percentage of alpha-cellulose (32.7%), but a low percentage of lignin (25%), which benefits pulping and bleaching. The hemicelluloses in LBS are mainly glucose and xylose. Ash content was about 6%, superior to the average value corresponding to woods, which makes pulping difficult. It was verified that the chemical compositions of the studied agro-residues vary significantly. Morphologically, the LBS fibers are comparable to those of hardwoods. Rather a significant amount of parenchyma cells was found in LBS. The TS has the highest average fiber length, while the LBS has the least, and the lengths of BS and CS fibers fall in between. In general, based on the results of this study, some propositions can be made about the possible applications of LBS as a non-wood renewable source of natural products for use in the production of pulp and paper.  相似文献   

5.
Waste management from pulp and paper production in the European Union   总被引:1,自引:0,他引:1  
Eleven million tonnes of waste are produced yearly by the European pulp and paper industry, of which 70% originates from the production of deinked recycled paper. Wastes are very diverse in composition and consist of rejects, different types of sludges and ashes in mills having on-site incineration treatment. The production of pulp and paper from virgin pulp generates less waste but the waste has similar properties to waste from the production of deinked pulp, although with less inorganics. Due to legislation and increased taxes, landfills are quickly being eliminated as a final destination for wastes in Europe, and incineration with energy recovery is becoming the main waste recovery method. Other options such as pyrolysis, gasification, land spreading, composting and reuse as building material are being applied, although research is still needed for optimization of the processes. Due to the large volumes of waste generated, the high moisture content of the waste and the changing waste composition as a result of process conditions, recovery methods are usually expensive and their environmental impact is still uncertain. For this reason, it is necessary to continue research on different applications of wastes, while taking into account the environmental and economic factors of these waste treatments.  相似文献   

6.
Polymer blends between lignin, a natural, widely available, no-cost material, and Poly(ε-caprolactone) (PCL), a biodegradable polymer, have been prepared using the ‘clean’, friendly to the environment, technique of the High Energy Ball Milling (HEBM). Two kinds of lignin have been used, Straw lignin, obtained through the Steam Explosion process (SE lignin), and/or Lignosulphonated one (LS lignin). The tensile mechanical tests have shown that, at certain specific compositions, the blends, in particular those with both SE and LS lignin, have good mechanical properties. In particular, by varying the blend composition it is possible to obtain materials with tuneable properties, therefore useful for different applications. Dynamic-Mechanical-Thermal Analysis (DMTA) reveals substantial immiscibility of the blends. Experiments of UV irradiation show that lignin acts as an UV stabilizer for PCL. The effect is higher with SE lignin, likely due to its low molecular weight, which allows the short lignin chains to diffuse more easily within the amorphous regions of PCL.  相似文献   

7.
Municipal solid wastes generated each year contain potentially useful and recyclable materials for composites. Simultaneously, interest is high for the use of natural fibers, such as flax (Linum usitatissimum L.), in composites thus providing cost and environmental benefits. To investigate the utility of these materials, composites containing flax fibers with recycled high density polyethylene (HDPE) were created and compared with similar products made with wood pulp, glass, and carbon fibers. Flax was either enzyme- or dew-retted to observe composite property differences between diverse levels of enzyme formulations and retting techniques. Coupling agents would strengthen binding between fibers and HDPE but in this study fibers were not modified in anyway to observe mechanical property differences between natural fiber composites. Composites with flax fibers from various retting methods, i.e., dew- vs. enzyme-retting, behaved differently; dew-retted fiber composites resulted in both lower strength and percent elongation. The lowest level of enzyme-retting and the most economical process produces composites that do not appear to differ from the highest level of enzyme-retting. Flax fibers improved the modulus of elasticity over wood pulp and HDPE alone and were less dense than glass or carbon fiber composites. Likely, differences in surface properties of the various flax fibers, while poorly defined and requiring further research, caused various interactions with the resin that influenced composite properties.  相似文献   

8.
Based on the graft copolymerization reactions of lignin and vinyl monomers, a series of graft copolymers of wood pulp and styrene (1-phenylethene) has been synthesized. The wood pulps used in this research are unbleached products produced by chemical, thermal, and mechanical pulping. All of them contain a high content of lignin (25–29 wt%). The grafting reaction is a free radical polymerization coinitiated by calcium chloride, hydrogen peroxide, and wood pulp in dimethylsulfoxide at 30°C. The effect of reaction temperature, reaction time, and the amount of the reactants on the conversion of monomer, yield of product, weight increase of pulp, and grafting efficiency of monomer has been studied. The grafted wood pulp was separated from homopolystyrene formed during the reaction by extraction of the reaction product with benzene in a Soxhlet apparatus for at least 48 h. The results show that after the reaction, the weight of all wood pulps was significantly increased and the weight increase of very high yield sodium bisulfite pulp (VHYS) was 333%. This proves that a part of the polymerized styrene was chemically bound to the wood pulp. The Fourier transform infrared (FTIR) spectra of the extracted products show absorbance peaks characteristic of both wood and polystyrene and, thus, provide strong proof of grafting. Grafting has completely changed the surface properties of the starting wood pulp from hydrophilic to hydrophobic, and under ordinary thermal compression conditions, thermoplastic composite objects of good uniformity can be made directly from reaction products which contain up to 52 wt% wood pulp.  相似文献   

9.
Self-bonding boards were manufactured with treated fibers at different concentrations of a laccase enzyme. This enzyme induced the generation of phenoxy radicals in the fiber lignin which can generate covalent bonds and cross-linked by radical–radical coupling. The effect of laccase concentration on the properties of obtained fiberboards was evaluated. The formation of free radicals and changes in the lignin macromolecule was measured using scavenging activity test, infrared spectroscopy, electron paramagnetic resonance and scanning electron microscopy. Thermal and mechanical properties of the resulting fiberboards were determined by differential scanning calorimetry, thermo gravimetric analysis and flexion tests. Increased thermal stability, modulus of elasticity and modulus of rupture and also, a reduction in thickness swelling and water absorption, were observed at higher concentrations of laccase. These results are ascribed to the effect of the free radicals that were generated during the enzymatic treatment.  相似文献   

10.
Lignins in general have been extensively studied, while beech wood lignin in particular is rarely researched. In the present work, Organosolv isolated lignin from beech wood (OBL) has been characterized. The isolation was done by two methods: (a) by using sulfuric acid at 170 °C and a reaction time of 120 min and (b) at a temperature of 180 °C for 240 min. A range of analytical methods were applied including elemental analysis, FT-IR, UV–Vis, 31P NMR, SEC, Pyrolysis-GC/MS and HPLC to gain information about establish the purity, structure, molecular weight, thermal behavior and to determine carbohydrate residues according to the NREL protocol. FT-IR and UV–Vis spectra of OBL revealed expected typical absorptions for lignins. NREL analysis presented a carbohydrate-free lignin fraction which has not been achieved to date. TGA and DSC are used to study the thermal behavior of the isolated lignins and showed a relatively low glass transition temperatures (Tg: 123 °C) and decomposition temperatures of 348 and 381 °C. The pyrograms generated from the pyrolysis–GC/MS at 550 °C consisted mainly of fragments of syringyl, guaiacyl and hydroxyphenyl units, thereby confirming the results of the NMR analysis. Our findings support Organolsolv as an efficient method to isolate pure lignin fractions from beech wood with practical value in industry.  相似文献   

11.
A novel solventless delignification of a defatted Picea glehnii wood flour sample was performed using a TiO2/polyethylene oxide (PEO) photocatalyst system. A cell wall structure of the wood flour was directly observed, showing that its lignin fraction was removed by the photodegradation. The total lignin amount was slightly decreased as compared with that of the pristine sample, and the vanillin formation was confirmed by the 1H-NMR measurement. The TiO2 worked as a radical initiator, and simultaneously acid and aldehyde compounds produced by the PEO photolysis did as an accelerator for the solventless delignification. Although the photocatalyst system showed high delignification activity even for a low molecular lignin model, the delignification of the wood flour sample was confined to the surface. It was found that the suppressed delignification behavior was due to crosslinked structure of lignin.  相似文献   

12.
The hydrophilic nature of cellulose fibers often results in poor compatibility with hydrophobic polymer matrices. Therefore, it becomes necessary to modify the surface of natural fiber for better binding between fiber and matrix. Chemicals are commonly used for the modification of cellulosic materials but large amount of solvents are usually involved. Microwave radiation induced grafting is one of the promising methods for the surface modification of natural fibers. In the present paper, we have reported the microwave radiations induced grafting onto sisal fibers (Agave sisalana) using methyl methacrylate monomer, which has been compared to the surface modification of sisal fibers using bacterial cellulase. The effects of these treatments on the properties of sisal fibers are discussed in the present paper. The modified fibers were characterized by scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis/differential thermal analysis techniques to determine their morphology, crystallinity and thermal stability.  相似文献   

13.
Lignins from the spent pulping liquor were normally acquired as waste product of pulp and paper mills. The possibilities of utilizing kraft lignin have yet been developed for commercial innovation. The objectives of this research are to recovery and utilization of lignin from black liquor of oil palm empty fruit bunches (OPEFBs). Kraft lignins from the OPEFBs black liquor were recovered by acidification procedure. They were precipitated at pH 4, 3, and 2 in order that determine the optimum pH for isolation. It can be clearly seen that the best condition of lignin precipitation was at pH 3. It offered the highest yield and purity. The kraft lignin and agarose were utilized as the crude material for the production of lignin–agarose hydrogel. Lignin–agarose hydrogel could be prepared by using epichlorohydrin as the cross-linking agent. The cross-linking occurrence was recognized by FTIR. Physical and chemical properties of hydrogel were investigated. Gel strength of lignin–agarose hydrogel was characterized by texture personal analysis. The results demonstrated that the gel strength increased with increasing of lignin and epichlorohydrin (ECH) in agarose solutions. 5% lignin, 5% agarose and 10 mL ECH contributed the best gel formation and the great mechanical properties. The effect of cross-linking condition on the gel properties, for example, gel hardness and fracturability, was examined.  相似文献   

14.
Surface treated macro and nanoparticle TiO2 samples have been prepared, characterised and their efficiency as UV blockers evaluated in clear coatings and paints. The particle size of the ‘base’ TiO2 has been optimised to block UV radiation and the surface treatment developed to deactivate the photocatalytic activity of the surface of the TiO2 particles. The resultant UV blockers have been evaluated in both solvent and water-based clear coatings. Nanoparticle TiO2 has been prepared from ‘seed’ and the particle size was controlled by calcination. It was found that the choice of particle size is a compromise between UVA absorption, UVB absorption, visible transmission and photoactivity. It has been demonstrated that TiO2 with a crystallite size of 25 nm yields a product with the optimum properties. A range of dispersants was successfully used to disperse and mill the TiO2. Both organic and inorganic dispersants were used; 2-amino-2-methyl-1-propanol and 1-amino-2-propanol (MIPA) and P2O5 and Na2SiO3 respectively. The surface of the nano-TiO2 was coated with mixed oxides of silicon, aluminium, zirconium and phosphorous. Addition of the resultant coated nano-rutiles to an Isocyanate Acrylic clear coating prolonged the lifetime of that coating compared to the blank. Generally, a surface treatment based on SiO2, Al2O3 and P2O5 was more successful than one based on ZrO2, Al2O3 and P2O5. Higher addition levels of the surface treatment were beneficial for protecting the polymeric coating. The UV blocker products were also evaluated in a water-based acrylic, first a water-based dispersion of the UV blocker was prepared before addition to the acrylic. The dispersions and resultant acrylic thin films were evaluated using UV/Vis spectroscopy and durability assessed. The ratio of absorbance at 300:500 nm for the water-based dispersion was shown to be a good predictor of both the transparency of the resultant acrylic thin film and the durability of that film, in terms of weight loss. Macro grade titanium dioxide pigments were also prepared and coated with treatments of silica, alumina and siloxane and their photo-stabilising activity in alkyd paint film assessed and found to be directly related to the electron–hole pair mobility and trapping as determined by micro-wave spectroscopy.  相似文献   

15.
A modified sequential mass-suspension polymerization was employed to ensure adequate dispersion of lignin into the monomeric phase. Due to its complex macromolecular structure and low compatibility with styrene, eucalyptus wood-extracted lignin, via a modified Kraft method, was esterified with methacrylic anhydride to ensure organic phase homogeneity into the reaction medium. Infrared spectroscopy showed a decrease in the hydroxyl band, a characteristic of natural lignin (3200–3400 cm?1) and an increase in the characteristic ester band (1720–1740 cm?1) whereas nuclear magnetic resonance measurements exhibited intense peaks in the range from 1.7 to 2.05 ppm (–CH3) and 5.4 to 6.2 ppm (=CH2), related to methacrylic anhydride. Comparatively, the esterified lignin also displayed an increase of its glass transition temperature for 98?°C, related to natural lignin, whose T g was determined to be equal to 91?°C. Styrene/lignin-based polymers exhibited higher average molar masses in comparison to the values observed for polystyrene synthesized with similar amounts of benzoyl peroxide, due to the ability of lignin to act as a free-radical scavenger. Composites obtained with styrene and natural or esterified lignin were successfully synthesized, presenting regular morphology and proper lignin dispersion. Based on a very simple polymerization system, it is possible to enhance the final properties of polystyrene through the incorporation of lignin, which represents an important platform for developing attractive polymeric materials from renewable resources.  相似文献   

16.
A series of formulations were prepared with different percentages of oligomer, epoxy diacrylate (EA-1020 ), monomer, 1,6 Hexane diol diacrylate,(HDDA) and different percentages of filler (Magnesium tri-silicate, Mg2Si3O8). Irgacure 369 [2-Benzyl-2-dimethyl-amine-1 (4-morpholinophenyl) butanone-1] was used in the formulations as photoinitiator. Ultraviolet (UV) cured thin polymer films were prepared from these formulating solutions on clean glass plates. Pendulum hardness (PH), gel content and macro scratch hardness (MSH) of the UV cured films were studied. One percent Mg2Si3O8 containing formulation showed the premium properties. The substrates (plain board) were coated by these formulating solutions and cured under the same UV lamp at different intensities of radiation. Various properties of the coated surface such as PH, gloss, adhesion, abrasion and MSH were investigated. The base coat containing 1% Mg2Si3O8 and top coat containing 48% HDDA produced the best performance among all the formulations inspected. The degradable properties in different weathering conditions on PH, gloss, adhesion, abrasion and MSH were measured. The surface cured with the optimized formulation (E) again yielded the minimum loss of the properties.  相似文献   

17.
Rheology of Lyocell Solutions from Different Cellulose Sources   总被引:4,自引:0,他引:4  
Rheological measurements were used to characterize the behavior of lyocell solutions, i.e., cellulose dissolved in N-methymorpholine-N-oxide. Cellulose sources included dissolving pulp, kraft pulp, sugar cane fibers, and kenaf fibers. The dominance of viscous behavior, G values, over elastic behavior, G values, is affected by cellulose concentration and molecular weight. At lower concentrations and degrees of polymerization (DP), dissolving pulp solutions show viscous, inelastic behavior at low frequencies. At higher concentration and DP, dissolving pulp solutions are more elastic at higher frequencies. Solutions prepared with kenaf and sugar cane fibers show similar properties to those using pure dissolving pulp, and comparisons suggest the molecular weight and/or the presence of other substances such as lignin in the cellulose from these alternative sources affect the rheology.  相似文献   

18.
Forest products decomposition in municipal solid waste landfills   总被引:1,自引:0,他引:1  
Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO(2)-neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components.  相似文献   

19.
Compostable terpolymers of l-lactide (LLA), delta-valerolactone (DVL), and switchgrass organosolv lignin (OSL) were synthesized via ring-opening polymerization to improve on polylactide homopolymer properties for commercial applications. OSL has properties that improve some of the deficiencies of polylactide, including polylactide’s limitations for use in food, beverage and medical applications due to its high water permeability and low ultraviolet light (UV) blocking capabilities. DVL was incorporated into these polymers to add flexibility. The addition of DVL to the polymer had a positive effect on the tensile strain properties of the resultant terpolymer, resulting in a more flexible polymer with a reduced Young’s modulus. Water vapor transmission rate calculations confirmed that water vapor was transported more slowly through terpolymer films than through the PLLA homopolymer under varying hygrostatic conditions. While the addition of DVL increased UV permeability, the addition of even a small amount of lignin can effectively counteract this effect.  相似文献   

20.
A new method for decomposing organic pollutants in water is proposed. First, we used less pure titanium dioxide (TiO2) particles as a photocatalyst material to achieve an absorption band that would be as wide as the spectrum for visible sunlight. The TiO2 particles were coated onto the surface of transparent plastic fibers and used to decompose test solutions of rhodamine that were placed in open sunlight for several days. We observed an effective decomposition, and after completing the decomposition process, the fibers could be removed easily from the cleaned water leaving no TiO2 in the water. Because there was no significant change in the elemental composition of the fiber surface after being used for cleaning the water, the coated fiber can be used repeatedly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号