首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leachability testing of metallic wastes.   总被引:1,自引:0,他引:1  
The performance of two tests, a batch test and a percolation test for the characterization of waste as suggested in the EU council decision 2003/33/EC was investigated. The tests were carried out on two solid waste streams from a metal recycling industry. The concentrations of heavy metals such as Cu, Zn and Pb were more than one order of magnitude lower than the proposed limit values. Generally, batch test values were equal or higher than percolation test values. With the proposed test procedures both materials could be considered as non-dangerous wastes. The test performance was also investigated using a leachant with higher ionic strength instead of demineralized water as prescribed. The results clearly show a significant increase in the concentration of some heavy metals. Total concentrations of phenolic compounds and polychlorinated biphenyls were less than 1 p.p.m. and 2 p.p.b., respectively. The precision of the batch and the percolation tests were on average 48 and 35%, respectively.  相似文献   

2.
Demolition wastes may be used in different civil engineering applications as road constructions, concrete, and embankments or landfill. Regardless its application, leaching tests of the waste should be carried out to assess concentrations of pollutants. Concrete, brick and mixture of concrete, bricks, tiles and ceramics wastes were subject to percolation test—CEN/TS 14405, and batch test—SR EN 12457. The leachates were analyzed with respect to concentration of inorganic elements—arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, selenium, zinc, fluoride, chloride and sulfate, and organic compounds (phenol index). The concentrations of elements in leachates were compared with the limit values of European regulation for the acceptance of inert wastes at landfills. Generally, the releases of inorganic species in leachates were below limits values. Some waste leachates obtained by percolation and batch test had high values for phenol index.  相似文献   

3.
Co-digestion of grease trap sludge and sewage sludge   总被引:3,自引:0,他引:3  
Redirection of organic waste, from landfilling or incineration, to biological treatment such as anaerobic digestion is of current interest in the Malmö-Copenhagen region. One type of waste that is expected to be suitable for anaerobic digestion is sludge from grease traps. Separate anaerobic digestion of this waste type and co-digestion with sewage sludge were evaluated. The methane potential was measured in batch laboratory tests, and the methane yield was determined in continuous pilot-scale digestion. Co-digestion of sludge from grease traps and sewage sludge was successfully performed both in laboratory batch and continuous pilot-scale digestion tests. The addition of grease trap sludge to sewage sludge digesters was seen to increase the methane yield of 9–27% when 10–30% of sludge from grease traps (on VS-basis) was added. It was also seen that the grease trap sludge increases the methane yield without increasing the sludge production. Single-substrate digestion of grease trap sludge gave high methane potentials in batch tests, but could not reach stable methane production in continuous digestion.  相似文献   

4.
Evaluation of leaching and extraction procedures for soil and waste   总被引:1,自引:1,他引:0  
Laboratory leaching tests may be used for source term determination as a basis for risk assessment for soil-groundwater pathways on contaminated sites. In order to evaluate different leaching procedures, batch extraction tests and percolation tests were performed using three reference materials produced from contaminated soil, demolition waste and municipal solid waste incinerator bottom ash. Emphasis was placed on the investigation of the leachability of the heavy metals copper and chromium, polycyclic aromatic hydrocarbons (PAHs) and the anions chloride and sulfate. Significant discrepancies between column experiments and batch/extraction tests were found for the release of PAHs and to a lesser extent for the heavy metals Cu and Cr. Additionally interlaboratory comparisons were conducted based on different leaching tests with the reference materials and evaluated using the criteria of comparability and reproducibility. The best reproducibility was achieved for all investigated substances in column tests. The reproducibility of batch tests was acceptable except for PAHs. The results from the experimental work will help establish standardized and feasible laboratory procedures as fundamental for substance specific risk assessment of contaminated sites.  相似文献   

5.
To evaluate carbonization as a thermal pretreatment method for landfilling, the releasing characteristics of organic and inorganic constituents from carbonization residue derived from shredded residue of bulky waste was investigated by means of batch and column leaching tests. Shredded residue of bulky waste itself and its incineration ash were tested together to compare pretreatment methods. In batch leaching tests at a liquid/solid ratio of 10, the release of organic carbon from carbonization residue was at a remarkably low level. Besides, carbonization contributed to immobilize heavy metals such as chromium, cadmium, and lead within its residue. In column tests, the discharges of organic constituents were lowest from carbonization residue under aerobic conditions due to microbial activity. The leaching of Cd, Cr, Pb, and Cu from carbonization residue was suppressed under anaerobic conditions; however, this suppression effect tended to be weaker under aerobic conditions. From the results showing that the total releasing amounts of organic and inorganic constituents from carbonization residue are so low as to be comparable to that of incineration ash, carbonization can be considered as one of the thermal pretreatment methods of organic wastes.  相似文献   

6.
Use of biofuels in the form of logging residues is increasing in the European countries. This intensive forestry, where entire trees are removed from the felling sites, may contribute to a negative nutrient balance in the forest soil. Recycling of ash from the combustion of clean wood fuel, sometimes in combination with limestone or additives/binders, back into the forest soil could maintain the soil nutrient reservoir intact. Before spreading ash, it is important to determine its contents and, particularly, its decomposition pattern using reliable laboratory leaching tests. In this study, mineralogy and the leaching of Na, Ca, K, Mg, Mn, Al, Cu, Fe, P, and Zn from wood ash pellets and granules, produced both from green liquor sludge and fly ash, are examined by XRD and by subjecting these substances to three different laboratory leaching tests: upflow percolation (CEN/TS 14405), batch leaching (SS-EN12457), and a new Swedish leaching test using a magnetic stirrer. Mineral phases such as quartz, ettringite, calcite, gehlenite, and aphtitalite were identified in the ash granules and in the ash/green liquor sludge granules, by means of XRD. Six additional minerals were detected in the granules of ash only, and another six in the ash/green liquor sludge granules. At L/S 2, the batch leaching test resulted in the highest amounts of elements leached and the upflow percolation test the lowest. At L/S 10, both the batch leaching test and the upflow percolation test resulted in high amounts of elements leached. The batch leaching test at L/S 10 complies quite well with the percolation test and could be suitable for ash/green liquor sludge granule evaluation in daily practice. The magnetic stirrer test seems to underestimate the release potential of elements from granules. The batch test is simple to perform, and has the ability to dissolve 70-80% of the elements with the highest mobility from the materials under study.  相似文献   

7.
Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC).Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, at temperatures of approx. 450-500 °C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis.Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.  相似文献   

8.
The classification of waste as hazardous could soon be assessed in Europe using largely the hazard properties of its constituents, according to the the Classification, Labelling and Packaging (CLP) regulation. Comprehensive knowledge of the component constituents of a given waste will therefore be necessary. An analytical protocol for determining waste composition is proposed, which includes using inductively coupled plasma (ICP) screening methods to identify major elements and gas chromatography/mass spectrometry (GC–MS) screening techniques to measure organic compounds. The method includes a gross or indicator measure of ‘pools’ of higher molecular weight organic substances that are taken to be less bioactive and less hazardous, and of unresolved ‘mass’ during the chromatography of volatile and semi-volatile compounds. The concentration of some elements and specific compounds that are linked to specific hazard properties and are subject to specific regulation (examples include: heavy metals, chromium(VI), cyanides, organo-halogens, and PCBs) are determined by classical quantitative analysis. To check the consistency of the analysis, the sum of the concentrations (including unresolved ‘pools’) should give a mass balance between 90% and 110%. Thirty-two laboratory samples comprising different industrial wastes (liquids and solids) were tested by two routine service laboratories, to give circa 7000 parameter results. Despite discrepancies in some parameters, a satisfactory sum of estimated or measured concentrations (analytical balance) of 90% was reached for 20 samples (63% of the overall total) during this first test exercise, with identified reasons for most of the unsatisfactory results. Regular use of this protocol (which is now included in the French legislation) has enabled service laboratories to reach a 90% mass balance for nearly all the solid samples tested, and most of liquid samples (difficulties were caused in some samples from polymers in solution and vegetable oil). The protocol is submitted to French and European normalization bodies (AFNOR and CEN) and further improvements are awaited.  相似文献   

9.
Column leaching tests are closer to natural conditions than batch shaking tests and in the last years have become more popular for assessing the release potential of pollutants from a variety of solids such as contaminated soils, waste, recycling and construction materials. Uncertainties still exist regarding equilibration of the percolating water with the solids, that might potentially lead to underestimation of contaminant concentrations in the effluent. The intention of this paper is to show that equilibration of pore water in a finite bath is fundamentally different from release of a certain fraction of the pollutant from a sample and that equilibrium is reached much faster at low liquid-to-solid ratios typical for column experiments (<0.25) than in batch tests with much higher liquid-to-solid ratios (e.g. 2–10). Two mass transfer mechanisms are elucidated: First-order type release (film diffusion) and intraparticle diffusion. For the latter, mass transfer slows down with time and sooner or later non-equilibrium conditions are observed at the column outlet after percolation has been started. Time scales of equilibrium leaching can be estimated based on a comparison of column length with the length of the mass transfer zone, which is equivalent to a Damköhler number approach. Mass transfer and diffusion coefficients used in this study apply to mass transfer mechanisms limited by diffusion in water, which is typical for release of organic compounds but also for dissolution of soluble minerals such as calcite, gypsum or similar. As a conclusion based on these theoretical considerations column tests (a) equilibrate much faster than batch leaching tests and (b) the equilibrium concentrations are maintained in the column effluent even for slow intraparticle diffusion limited desorption for extended periods of time (>days). Since for equilibration the specific surface area is crucial, the harmonic mean of the grain size is relevant (small grain sizes result in high concentrations even after short pre-equilibration of a column). The absolute time scales calculated with linear sorption and aqueous diffusion aim at organic compounds and are not valid for sparingly soluble mineral phases (e.g. metal oxides and silicates). However, the general findings on how different liquid-to-solid ratios and specific surface area influence equilibration time scales also apply to other mass transfer mechanisms.  相似文献   

10.
Cd, Cr, Mn, Ni, Pb, and Zn behaviour during sewage sludge incineration was investigated in seven pilot tests using a circulating fluidised bed furnace. Dewatered sludge at a solids concentration of 15-18% was fed to the furnace either alone (two tests) or spiked with chlorinated organic compounds (five tests). The behaviour of metals in the fluidised bed furnace was studied by comparing metal concentrations in the two main ash streams: ash separated from the cyclone immediately following the fluidised bed furnace, and fly ash recovered in the final bag filter. A metal enrichment factor was defined as the ratio of metal concentration between filter ash and cyclone ash. Only Cd and Pb showed any significant enrichment. Their enrichment factors were mainly affected by chlorine concentration in the feed sludge. To check whether simple equilibrium models may explain and predict metal behaviour, experimental data were compared with percentage of the metal vaporisation in the combustion chamber predicted using a thermodynamic model. Discrepancies between model predictions and experimental results are accounted for by considering that kinetics may be a limiting factor in the formation of metal chloride gaseous species. Due to the very short sludge residence time in the fluidised bed furnace, the gaseous compounds have little chance to evolve completely.  相似文献   

11.
In Denmark, the production of municipal sewage sludge decreased from approximately 170,000 ton d.m. in 1994 to 140,000 ton d.m. in 2002. The sludge is handled and treated in a number of ways. The quality of Danish sludge has steadily improved since the middle of the 1980s, when the first set of quality criteria for heavy metals was introduced. In 1997, cut-off criteria for the organic pollutants, LAS, DEHP, nonylphenol and PAHs were introduced. Effective control from authorities, voluntary phasing out agreements with industry, improved source identification tools, better handling and after-care methods have in combination with higher waste duties led to a significant reduction in the sludge level of especially cadmium, mercury, chromium, LAS and nonylphenol. The increased quality demand has, nevertheless, also led to a minor reduction in the use of sewage sludge as organic fertiliser on agricultural land.  相似文献   

12.
The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO2 respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.  相似文献   

13.
In this study, percolation and batch leaching tests were considered in order to characterize the behaviour of air pollution control (APC) residues produced in a municipal solid waste incinerator (MSWI) as a function of the liquid to solid ratio (L/S). This waste is hazardous, and taking into account their physical and chemical properties, leaching of contaminants into the environment is the main concern. In our work the leaching behaviour of toxic heavy metals (Pb, Zn, Cr, Ni and Cu) and inorganics associated with soluble salts (Na, K, Ca and Cl) was addressed. Although pH of the leaching solution is the most important variable, L/S may also play an important role in leaching processes. In our work, results from column and batch tests were compared in terms of concentration (mg/L) and releasing (mg/kg). The APC residues revealed to be hazardous according to both tests, and both Pb and Cl far exceeded the regulatory thresholds. The material exhibits high solubility, and when the liquid to solid ratio was high, more than 50% can be solubilised. The patterns of release may be in some cases availability or solubility controlled, and the former was easier to identify. When the results from column and batch experiments were compared by representing the cumulative released amounts (in mg/kg) as a function of L/S, both curves match for Zn, Ni, Cu, K, Na, Cl and Ca, but for Cr and Pb a significant difference was observed. In fact, the column experiments revealed that under percolation conditions it should be expected slow releasing of Pb along time. From this study, it can be concluded that the released amounts obtained in batch experiments for a certain L/S should be considered as the worst case for medium term. Some simple models proposed on the literature and based on local equilibrium assumption showed good fitting to experimental data for soluble species (non-reactive solutes).  相似文献   

14.
A study of existing organic waste types in Malm?, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge digesters at the wastewater treatment plant, the yearly energy production from methane could be expected to increase from 24 to 43 GWh.  相似文献   

15.
A natural treatment system for the treatment of leachate was studied at Moskogen landfill in southern Sweden. This facility consists of three consecutive ponds and a soil-plant (SP)-system. A test area, receiving water from the third pond with the same hydraulic load as the SP-system, was used for estimation of the latter system. Quality parameters including biochemical oxygen demand, total organic carbon, ammonium, nitrate, orthophosphate, and total suspended solids along the treatment line were determined as well as soluble metals (Cu, Cd, Zn, Cr, Ni, and Pb). In addition a thorough investigation along the treatment line has also been performed concerning volatile organic compounds and semi-volatile organic compounds. Non-polar organic compounds were investigated using gas chromatography-mass spectrometry. Quantification was based on the assumption of equal response for the compounds found in comparison with the chosen marker substances. For polar, water-soluble compounds the measurements were restricted to phenolic compounds using high-performance liquid chromatography. Several different types of organic compounds were found in the raw leachate including aromatics, benzene-sulfonamides, biphenyls, naphthalene, organic phosphates, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phenols and phthalates. The treatment system efficiently reduced organic pollutants, heavy metals, and nitrogen/phosphorous compounds. Most metals and organic compounds in the leachate were already significantly reduced to a low level in the treatment ponds and ammonium-N was efficiently transformed to nitrate-N in the SP-system.  相似文献   

16.
The content of heavy metals is the major limitation to the application of sewage sludge in soil. However, assessment of the pollution by total metal determination does not reveal the true environmental impact. It is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, sequential extraction of metals from sludge before and after aerobic digestion was applied to sludge from five WWTPs in southern Spain to obtain information about the influence of the digestion treatment in the concentration of the metals. The percentage of each metal as residual, oxidizable, reducible and exchangeable form was calculated. For this purpose, sludge samples were collected from two different points of the plants, namely, sludge from the mixture (primary and secondary sludge) tank (mixed sludge, MS) and the digested-dewatered sludge (final sludge, FS). Heavy metals, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn, were extracted following the sequential extraction scheme proposed by the Standards, Measurements and Testing Programme of the European Commission and determined by inductively-coupled plasma atomic emission spectrometry. The total concentration of heavy metals in the measured sludge samples did not exceed the limits set out by European legislation and were mainly associated with the two less-available fractions (27-28% as oxidizable metal and 44-50% as residual metal). However, metals as Co (64% in MS and 52% in FS samples), Mn (82% in MS and 79% in FS), Ni (32% in MS and 26% in FS) and Zn (79% in MS and 62% in FS) were present at important percentages as available forms. In addition, results showed a clear increase of the concentration of metals after sludge treatment in the proportion of two less-available fractions (oxidizable and residual metal).  相似文献   

17.
A direct result of the growing number of municipal wastewater-treatment plants (WWTPs) has been an increase in the generation of large amounts of sewage sludge that requires environmentally acceptable final destination. To decrease the volume of sludge, a common technique is drying the sludge at a low temperature in rotary kilns. The result of this process is a granulated material consisting of dehydrated sludge pellets.After this treatment, this pelletized material becomes easier to manipulate, but it also becomes a more toxic waste, containing dangerous substances, mostly of the lipid type. At its final stage, this material is usually incinerated, used as a comburent material, used as an agricultural fertilizer, or used in the cement industry. Each application has its own problems and requires remediation measures from the safety and environmental viewpoints.In this study, we looked beyond these possible applications and analyzed the transformation of sewage sludge through a ceramization process into a material similar to expanded clays; we subsequently explored its uses in the building industry or in the agriculture industry, among others. Both the properties of the product material and the production method were characterized, and an environmental analysis was conducted.The new, lightweight material had a microstructure with open porosity and low thermal conductivity. Environmental characterization such as the leaching test revealed that undetectable amounts of hazardous metals from the sludge were present in the leachate after the sludge went through a thermal treatment, despite their initial presence (with the exception of vanadium, which could pose some restrictions on some of the proposed uses for the final product). Toxicity tests also showed negative results. The study of gaseous emissions during production revealed emissions factors similar to those during the production of conventional clay ceramics, although with higher organic emissions. As for conventional clay ceramics, industrial production would require the implementation of some type of air-depuration system. The results showed that the ceramization of sludge pellets is a promising valorization technique worth considering from both the economic and technological perspectives.  相似文献   

18.
Leaching tests are becoming more relevant in assessing solid waste material, particularly with respect to groundwater risks. In the field, water infiltration is the dominant leaching mechanism, which is simulated in the lab with batch and column tests. In this study, we compared percolation, through analytical solutions of the advection–dispersion equation, to laboratory batch and sequential leaching tests. The analytical solutions are supported with comprehensive data from various field and laboratory leaching of different solutes from waste materials and soils collected in long-term joint research projects funded by the German Federal Ministry for Education and Research and the Federal Environment Agency. The comparison of theory and data is facilitated if concentrations and cumulative release are plotted versus the liquid–solid ratios (LS). Both theory and data indicate that leaching behaviour is independent of duration and physical dimensions of the leaching tests. This holds even if field lysimeters are compared to laboratory columns of different size, different flow velocities as well as different contact times. In general, laboratory batch tests over predict effluent concentrations (for LS < Kd). Leaching of solutes from solid samples of certain materials (e.g. chloride from incineration ashes or sulphate from demolition waste) in column and lysimeter tests compares very well and agrees with the analytical solutions. Overall, reproducibility and agreement with theory of column tests are better than batch tests, presumably because the latter are prone to artefacts (e.g. in liquid–solid separation steps). Theory and data fit surprisingly well, despite the fact that the theory is based on the local equilibrium assumption; non-linear sorption and chemical reactions in the solid waste materials are not considered.  相似文献   

19.
Tar pond wastes from Sydney, Nova Scotia, containing 50 ppm or more of polychlorinated biphenyls (PCBs) were treated in a pilot‐scale rotary kiln. In order to use the existing feed system attached to the rotary kiln, the wastes were first oven‐dried. Stack gas sampling was conducted during the test, which included measurement of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), semi‐volatile organic compounds (SVOCs), HCl, and metals. The purpose of this study was to determine emissions from treatment of the tar pond waste using rotary kiln technology. It was found that the dried sludge could sustain combustion in the kiln without any supporting fuel. The emissions of polychlorinated dibenzodioxins/furans (PCDD/Fs) were higher than the Canadian Council of Ministers of the Environment (CCME) air emissions guidelines, and the reasons for this are discussed. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
Throughout the utilization of recycled materials, weathering factors such as humidity, gas composition and temperature have the potential to change the material properties and enhance the release of inorganic contaminants. In this research, the effects of weathering factors on recycled gravel materials for roadbeds were evaluated by applying three kinds of accelerating exposure tests: freezing–melting cycle test, carbonation test, and dry–humid cycle test. The effects of exposure tests were determined by X-ray diffraction (XRD) analysis and serial batch leaching test, making it possible to identify the change in release mechanisms. Sixteen elements, mainly metals, were investigated. Tested samples were molten slag from municipal solid waste, molten slag from automobile shredded residue, and crushed natural stone.After the exposure tests, the increase of cumulative release in the leaching test was generally less than 2.0 times that of the samples without the exposure test. Among the three test conditions, freezing–melting showed a slightly higher effect of enhancing the release of constituents. XRD analysis showed no change in chemical species. From these results, it was determined that the stony samples were stable enough so that their properties were not significantly changed by the exposure tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号