首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Effect of additives on dechlorination of PVC by mechanochemical treatment   总被引:1,自引:0,他引:1  
Polyvinyl chloride (–CH2–CHCl–) n (PVC) was ground with a powdered inorganic material (CaO, CaCO3, SiO2, Al2O3, or slag) in a planetary ball mill under atmospheric conditions to investigate the effect of additions on its dechlorination. The grinding causes a dehydrochlorinating reaction, forming a mixture of partially dechlorinated PVC and inorganic chloride, depending on the grinding time. The dechlorination increases as the grinding progresses, and is improved with increasing amounts of additives. The most effective additive is a mixture of CaO, SiO2, and Al2O3, which has the same constituent components as blast furnace slag. CaO, a mixture of CaO, SiO2, and blast furnace slag, are also effective, but CaCO3 is the least effective additive tired. Received: August 3, 2000 / Accepted: September 21, 2000  相似文献   

2.
Resurrection of the iron and phosphorus resource in steel-making slag   总被引:4,自引:0,他引:4  
 This research focused on the treatment of steel-making slags to recycle and recover iron and phosphorus. The carbothermal reduction behavior of both synthesized and factory steel-making slag in microwave irradiation was investigated. The slags were mixed with graphite powder and heated to a temperature higher than 1873 K to precipitate a lump of Fe–C alloy with a diameter of 2–8 mm. The larger the carbon equivalent (Ceq, defined in the text), the higher the fractional reduction of iron and phosphorus. An increase in the SiO2 content of slag led to a considerable improvement in the reduction for both iron and phosphorus because of the improvement in the fluidity of the slags and an increase in the activity coefficient of P2O5 in the slags. The extraction behavior of phosphorus from Fe–P–Csatd alloy was also investigated at 1473 K by carbonate flux treatment. For all the experiments with a processing time longer than 10 min, the phosphorus in the fluxes could be concentrated to more than 9% (w/w) showing that it could be used as a phosphorus resource. Compared with K2CO3 flux treatment, that using Na2CO3 was more effective for the extraction of phosphorus, and this was attributed to the lower evaporation of Na2CO3. Finally, a recycling scheme for steel-making slag is proposed. Received: March 16, 2001 / Accepted: November 12, 2001  相似文献   

3.
Hydrogarnet was synthesized hydrothermally below 200°C using molten slag obtained from municipal solid waste. For comparison, it was also synthesized using pure-phase CaO–Al2O3–SiO2–H2O, as reported previously. The structural and textural properties of this material were investigated using various analytical and spectroscopic techniques such as X-ray diffraction, X-ray fluorescence spectrometry, atomic absorption spectrometry (AAS), thermogravimetry/differential thermal analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The Cl fixation ability of hydrogarnet was investigated in the temperature range 500–800°C in a fixed-bed flow reactor using a HCl concentration (1000 p.p.m.v.) similar to that of incinerator exhaust gas. Under these experimental conditions, the hydrogarnet was capable of reducing the HCl gas level to less than 1 p.p.m.v. Analysis of the spent catalyst revealed that the hydrogarnet was being transformed into wadalite and CaCl2 at high temperatures. The elution test for chromium ions in hydrogarnet obtained from slag was also used, and it was found that chromium ions were not eluted from hydrogarnet. Received: January 27, 2001 / Accepted: October 11, 2001  相似文献   

4.
Metallic phases in slags and their influence on the leaching characteristics were investigated. The proportions of metallic phase in four slags were 0.028%, 0.24%, 1.87%, and 3.05% by weight. The lead content was 10–248 mg/kg in bulk slag after metal removal, while in the metallic phase it was 579–7390 mg/kg. Lead concentrations in the metallic phase were more than ten times higher than in slags after metal removal. Lead was distributed in the metallic phase at 2.0%, 8.3%, 10.3%, and 47.4%. The concentrations of all metallic elements in metallic phases were much higher than in bulk slag. Iron, copper, and nickel had accumulated in magnetic metals, while aluminum and zinc were found in nonmagnetic metals. As regards chromium, manganese, lead, and tin, the proportion of metallic phases depended on the slag samples. By removing metallic phases, both water and pH 4 leachable lead decreased. The basic principles of melting residues containing lead are the separation of lead as a metal in reductive melting, and the containment of lead ions into uniform glassy particles in oxidization melting. Melting slag can be seen to contribute to environmental preservation by facilitating the recycling of materials through the separation of metals from melting slag. Received: February 21, 2000 / Accepted: July 27, 2000  相似文献   

5.
Solid-fuel conversion or gasification study of sewage sludge and energy recovery has become increasingly important because energy recovery and climate change are emerging issues. Various types of catalysts, such as dolomite, steel slag and calcium oxide, were tested for tar reduction during the sewage sludge gasification process. For the experiments on sewage sludge gasification reactions and tar reduction using the catalysts, a fixed bed of laboratory-scale experimental apparatus was set up. The reactor was made of quartz glass using an electric muffle furnace. The sewage sludge samples used had moisture contents less than 6%. The experimental conditions were as follows: sample weight was 20 g and reaction time was 10 min, gasification reaction temperature was from 600 to 800°C, and the equivalence ratio was 0.2. The quantity of catalysts was 2–6 g, and temperatures of catalyst layers were 500–700°C. As the reaction temperature increased up to 800°C, the yields of gaseous products and liquid products increased, whereas char and tar products decreased, showing effects on gas product compositions. These results were considered to be due to the increase of the water-gas reaction and Boudouard reaction. In the case of experiments with catalysts, dolomite (4 g), steel slag (6 g) and calcium oxide (6 g) were used. When the temperature of catalysts increased, the weight of the tar produced decreased with different cracking performances by different catalysts. Reforming reactions were considered to occur on the surface of dolomite, steel slag and calcium oxide, causing cracking of the hydrocarbon structure, which eventually showed reduced tar generation.  相似文献   

6.
Acidic bioleaching of heavy metals from sewage sludge   总被引:2,自引:0,他引:2  
The overall objective of this study was to evaluate the use of controlled bio-acidification prior to land application as a decontamination process to remove heavy metals from sludge. The sulfur-oxidizing bacteria were naturally available in the sludge samples and were activated by providing sulfur and aeration at 28°C–30°C. Activation resulted in bio-acidification to pH 2 within 5–11 days. Successive inoculation of fresh sludges with 5% acidified samples reduced the acidification time to 2–3 days in most samples. Bio-acidification resulted in dissolving significant quantities of heavy metals from all sludge types tested. The maximum solubilization results were: 86%–97% for Ni; 48%–98% for Pb; 26%–71% for Cr; 18%–91% for Zn; 16%–90% for Cu; 7%–60% for Cd. Limited metal solubilization results were observed in the various control samples that accompanied the bio-acidified samples. The leaching results in the control samples were limited to 2%–19% for Ni, 0%–7% for Pb, 0%–5% for Cr, 0.3%–4% for Zn, 0.2%–4% for Cu and 0%–3% for Cd. The results confirmed that Ni and Pb were the easiest metals to dissolve from the various sludge types. On the other hand, the lowest solubilization results were observed for Cu and Cd, and moderate solubilization results were achieved for Cr. The bio-acidification process resulted in moderate gains in terms of improving the suitability of tested sludges for land application. Received: April 19, 1999 / Accepted: November 4, 1999  相似文献   

7.
Polychlorinated biphenyl (PCB) residues from the sodium dispersion (SD) process were employed as the raw materials for the production of activated carbon using KOH activation. The pore properties, such as the specific surface area and pore size distribution, were characterized using the Barrett–Joyner–Halenda method and the Horvath–Kawazoe method based on the N2 adsorption isotherm at 77 K. The activated carbon produced showed similar adsorption capacities and specific surface areas to the commercially available product. The effects of the activation conditions on the porosity of the activated carbon produced were studied. The most significant factor affecting the specific surface proved to be the activation temperature. The activated carbon produced from PCB residues from the high-temperature (423–443 K) SD process had a binary pore size distribution well developed in the 4 nm region and in the micropore region. The pore structure of the carbon produced from PCB residues from the low-temperature (333–393 K) SD process had a wide range of micropores and mesopores.  相似文献   

8.
Emission inventory of deca-brominated diphenyl ether (DBDE) in Japan   总被引:1,自引:0,他引:1  
Atmospheric emissions of deca-brominated diphenyl ether (DBDE) in Japan were estimated based on the material flow of DBDE products and their emission factors. In 2002, the demand for DBDE in Japan was 2200 ton/year and the stock level was about 60 000 ton. The DBDE flow into the waste stream was estimated to be about 6000 ton/year and the flow out through second-hand product exports was more than 700 ton/year. Home appliance recycling facilities dismantle and crush domestic wastes containing about 600 ton of DBDE annually. Material recycling of crushed plastics is not commonly practiced as yet. Emission factors from plastics processing (2 × 10−9–1 × 10−7), textile processing (9 × 10−7), home appliance recycling (8 × 10−9–5 × 10−6), and waste incineration (1 × 10−7–2 × 10−6) were estimated using field measurement data. The DBDE emission rate through house dust during the service life of final products (2 × 10−7–9 × 10−7 per year) was estimated using the DBDE concentration in dust and the amount of dust in used televisions. Emission factors from previous studies were also used. The estimated total DBDE emission was 170–1800 kg/year. These results suggest the necessity of characterizing emissions during the service life of products, which is essential information for formulating an appropriate e-waste recycling strategy.  相似文献   

9.
Polycaprolactone (PCL) powders were prepared from PCL pellets using a rotation mechanical mixer. PCL powders were separated by sieves with 60 and 120 meshes into four classes; 0–125 μm, 125–250 μm, 0–250 μm and 250–500 μm. Biodegradation tests of PCL powders and cellulose powders in an aqueous solution at 25°C were performed using the coulometer according to ISO 14851. Biodegradation tests of PCL powders and cellulose powders in controlled compost at 58°C were performed by the Mitsui Chemical Analysis and Consulting Service, Inc. according to ISO 14855-1 and by using the Microbial Oxidative Degradation Analyzer (MODA) instrument according to ISO/DIS 14855-2. PCL powders were faster biodegraded than cellulose powders. The reproducibility of biodegradation of PCL powders is excellent. Differences in the biodegradation of PCL powders with different class were not observed by the ISO 14851 and ISO/DIS 14855-2. An enzymatic degradation test of PCL powders with different class was studied using an enzyme of Amano Lipase PS. PCL with smaller particle size was faster degraded by the enzyme. PCL powders with regulated sizes from 125 μm to 250 μm are proposed as a reference material for the biodegradation test.  相似文献   

10.
The fate of chlorothalonil, chlorpyrifos and profenofos in sandy loam soil under tropical condition was studied in a vegetable plot in the Cameron Highlands, Malaysia. The plot was treated with chlorothalonil, chlorpyrifos and profenofos according to normal agricultural practices of the Cameron Highlands. Water (runoff and lysimeter), soil and bedload sediment samples were taken according to a sampling schedule. Residues in water, soil and bedload sediment samples were laboratory analysed to determine amount. Chlorothalonil residues were detected in the range of < 0.01–0.08 mg/kg in the soil, < 0.01–0.02 ng/mL in the leachate, < 0.01–0.02 ng/mL in the runoff and < 0.01–0.11mg/kg in the sediment. Field studies of chlorpyrifos showed residue levels of < 0.01–0.06 mg/kg in the soil, < 0.01–0.07 ng/mL in the leachate, < 0.01–0.08 ng/mL in the runoff and < 0.01–0.62 mg/kg in the sediment. Residue levels of profenofos were detected in the range of < 0.01–0.02 mg/kg in the soil, < 0.01–0.87 ng/mL in the leachate, < 0.01–0.08 ng/mL in the runoff and < 0.01–0.35 mg/kg in the sediment. The three pesticides dissipated rapidly, with DT50 (time for 50% loss) of less than two days. The study showed that these pesticides dissipated rapidly under the climatic conditions of the Cameron Highlands in Malaysia.  相似文献   

11.
The arsenic and antimony balance in two municipal waste incinerators was investigated. Initially, the production rates of ash and wet scrubber effluent were estimated. Then the arsenic and antimony in the ash and wet scrubber effluent were determined, which gave an estimate of the elemental balance. The total amounts of arsenic and antimony in the municipal waste were 0.9 g/t and 30–44 g/t, respectively. The distributions to fly ash were 45–47% and 33–74% for arsenic and antimony, respectively. The distribution mechanisms of arsenic and antimony are discussed from the viewpoints of their thermodynamics as well as their initial valencies, which greatly affect their behaviour. Received: July 2, 1998 / Accepted: February 27, 1999  相似文献   

12.
Polylactic acid (PLA)/starch fibers were produced by twin screw extrusion of PLA with granular or gelatinized starch/glycerol followed by drawing through a set of winders with an intermediate oven. At 30% starch, fibers drawn 2–5x were highly flexible (elongation 20–100%) while undrawn filaments were brittle (elongation 2–9%). Tensile strength and moduli increased with increasing draw ratio but decreased with increasing starch content. Mechanical properties were better for composites made with gelatinized starch/glycerol than granular starch. In conclusion, orientation greatly increases the flexibility of PLA/starch composites and this may be useful not only in fibers but also possibly in molded articles. Other advantages of starch addition could include fiber softness without added plasticizer, moisture/odor absorbency and as a carrier for active compounds.  相似文献   

13.
The optimum middle-phase microemulsion used for remediation of oily contaminated soils is often obtained by mixing a certain amount of a surfactant/alcohol mixture with oil and adjusting the salinity concentrations at a constant water–oil ratio. Upon introduction to the subsurface, however, the system may not be in the optimum state throughout the remediation process owing to the change in the water–oil ratio. This research has attempted to investigate the effect of the water–oil ratio on the phase behavior of systems containing brine, anionic surfactant, alcohols, and different oils. By systematically changing the water–oil ratio, while keeping the others variables constant, the systems exhibited different phase behavior. The results revealed that the effect of the water–oil ratio on system behavior was significant, and analogous to that of salinity. Increasing the water–oil ratio led the system change from winsor I → winsor III → winsor II. The greater the water–oil ratio the lower the salinity required to produce the middle-phase microemulsion, but the narrower the salinity range of the three-phase region. An empirical correlation has been developed in order to predict the changes in phase behavior with the changes in water–oil ratio. This provides a useful tool for designing optimum formulations suitable for soil remediation. Received: October 5, 1999 / Accepted: March 27, 2000  相似文献   

14.
Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH ± 12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained below these limit values at the relatively high pH that remained after carbonation. The V-bearing di-Ca silicate (C2S) phase has been identified as the major source of the V-leaching. It is shown that the dissolution of this mineral is limited in fresh steel slag, but strongly enhanced by carbonation, which causes the observed enhanced release of V from the K3 slag. The obtained insights in the mineral transformation reactions and their effect on pH and V-leaching provide guidance for further improvement of an accelerated carbonation technology.  相似文献   

15.
A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of 14C-labeled substances in soil–plant–atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between 14C-emissions from soil surfaces and 14C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate – using the two-chamber-lysimeter-test-system – are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil–plant-systems. Mineralization of 14C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide 14C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules.  相似文献   

16.
In this paper, the photosynthetic production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymers is reported. The wild-type and highly active doubly mutated PHA synthase 1 (S325T/Q481K, abbreviated ST/QK) genes from Pseudomonas sp. 61-3 were introduced into Arabidopsis thaliana. Peroxisome targeting signal 1 (PTS1) was used to target PHA synthases into the peroxisome to synthesize PHA from the intermediates of the β-oxidation pathway. The transgenic Arabidopsis produced PHA copolymers consisting of 40–57 mol% 3-hydroxybutyrate, 21–49 mol% 3-hydroxyvalerate, 8–18 mol% 3-hydroxyhexanoate, and 2–8 mol% 3-hydroxyoctanoate. The maximum PHA contents were 220μ g/g cell dry weight (cdw) in leaves, and 36μ g/g cdw in stems, respectively. The expression of the ST/QK mutated PHA synthase in leaves gene did not lead to significant difference in PHA content and monomer composition of PHAs, compared to the wild-type PHA synthase gene, suggesting that the supply of monomers may be a rate-determining step of PHA biosynthesis in the peroxisome. However, in stems, there were significant differences dependent on whether the wild-type or ST/QK mutated PHA synthase was expressed. These results suggest that tissue-specific monomer availability is important in determining the final mol% composition of PHA copolymers produced by the peroxisome in plants.  相似文献   

17.
Survey on the status of imported wastes used as raw material in China   总被引:2,自引:0,他引:2  
 A survey was conducted on the status of imported waste steel–iron scrap and paper–cardboard, and their environmental impacts were analyzed based on the survey results. It was concluded that the importation of wastes will continue, and that it can be helpful to meet the steel–iron and paper-market demands. Some suggestions are offered to address these issues. Received: May 1, 2001 / Accepted: October 1, 2001  相似文献   

18.
Organophosphoric acid triester (OPE) concentration levels in water and bottom sediment at the Osaka North Port Sea-Based Solid Waste Disposal Site were investigated, and the behavior of OPEs in the water environment of the waste disposal site was examined. The more highly water-soluble OPEs were frequently detected in raw water. Of the OPEs detected, TCEP and TCPP showed very high concentrations (1.0–90 μg/l), followed by TEP (0.3–10 μg/l) > TBXP (0.8–6.3 μg/l) > TDCPP (0.6–6.2 μg/l) > TBP (0.2–1.5 μg/l) > TPP (<0.1 μg/l). Most OPEs detected in water were eluted from the disposal waste to the water phase immediately and behaved as dissolved forms with no distribution in suspended solids (SS). On the other hand, the less water-soluble OPEs, such as TCP or TEHP, were detected in bottom sediment but hardly at all in water samples. All OPEs were detected at the waste disposal site, within which their concentration levels were uniform. It appeared that the less water-soluble OPEs were present as SS-associated forms and behaved in line with the floating surface sludge at the bottom. Received: July 6, 1998 / Accepted: February 25, 1999  相似文献   

19.
A new treatment method is developed to degrade 4-chlorophenol (4-cp) and its oxidation intermediates. The experimental results of this research demonstrate that 4-cp and its oxidation intermediates can be decomposed completely by basic oxygen furnace slag (BOF slag) with hydrogen peroxide (H2O2) in an acid solution. The factors that effect the treatment efficiency were studied including initial concentration of 4-cp, pH of the solution, concentration of H2O2 and amount of BOF slag. The BOF slags are final waste materials in the steel making process. The major components of BOF slag are CaO, SiO2, Fe2O3, FeO, MgO and MnO. As the BOF slag in an acid solution, FeO and Fe2O3 can be dissociated to produce ferrous ion and ferric ion. Ferrous ion reacts with hydrogen peroxide to form “Fenton's reagent” which can produce hydroxyl radicals (OH.). Hydroxyl radical possession of high oxidation ability can oxidize organic chemicals effectively. Results show that 100 mg/l of 4-cp is decomposed completely within 30 min by 438.7 g/l BOF slag with 8.2 mM hydrogen peroxide in pH=2.8±0.2 solution. The COD value of the solution is reduced from 290 to 90 mg/l. The factors studied which affect the 4-cp decomposition efficiency were the hydrogen peroxide concentration, BOF slag concentration, pH of the solution and initial concentration of 4-cp. Because large amounts of Fe2O3 and FeO are present in the BOF slag, the BOF slag not only has a high treatment efficiency, but also can be used repeatedly.  相似文献   

20.
Solid and soft forms of waste polystyrene have been treated with coumarone–indene resin and benzene to produce a new adhesive. The adhesive is prepared from various compositions of polystyrene (13–38 wt%), coumarone-indene resin (5–7%) and benzene (57–80%). Viscosity, peel strength and tensile shear strength of the adhesive is determined by a HAAKE Rotary Viscometer, Lloyd Adhesion Tester and Instron machine, respectively. Rolling ball technique was used to measure the tackiness of the adhesive. Results show that the adhesion property increases with increase in polystyrene composition and coating thickness. This observation is attributed to the increasing wettability of adhesive on the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号