首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
采用自制的SSX萃取剂对FeCl3蚀刻液膜电解阴极液(简称废液)中的Ni2+进行萃取回收。考察了萃取pH、SSX萃取剂含量、萃取相比(SSX萃取剂与废液的体积比)、萃取时间、萃取次数对Ni2+萃取率的影响,以及反萃剂HCl溶液浓度、反萃相比(反萃剂与萃取液的体积比)、反萃时间对Ni2+反萃率的影响。实验结果表明: 当SSX萃取剂质量分数20%、萃取pH 2.0、萃取相比1.0、萃取时间10 min、1次萃取时,Ni2+萃取率可达74.56%;当反萃剂HCl溶液浓度6.0 mol/L、反萃相比1.5、反萃时间10 min时,Ni2+反萃率达93.10%;再生后的SSX萃取剂重复使用4次后,Ni2+的累积萃取率达91.00%,萃取剂中Ni2+的质量浓度可达14.94 g/L;反萃液经浓缩、结晶处理可制备电镀用NiCl2产品。  相似文献   

2.
以Ti板为阴极、Ti/IrO2-Ta2O5电极为阳极,采用三维电极法处理六硝基茋生产废水。通过单因素实验和正交实验确定的最佳工艺条件为:电解电压8 V,电解时间4 h,极板间距5 mm,初始废水COD=3 120 mg/L,m(玻璃珠)∶m(活性炭)=1∶3(选定活性炭的质量为5.0 g),ρ(硫酸钠)=500 mg/L。在此最佳工艺条件下,废水COD去除率为36.5%。  相似文献   

3.
采用离子交换膜电解技术处理铜冶炼过程产生的含氯及重金属的废酸。考察了废酸处理工艺、电解温度、电解时间、电流密度和催化剂的添加等条件对处理效果的影响。实验结果表明:采用先沉淀重金属后脱氯的废酸处理工艺,氯离子和铜离子的去除效果均较好;当以钛盐为催化剂时,在电解温度为40 ℃、电解时间为2.0 h、电流密度为825 A/m2的最佳工艺条件下,处理后废酸中的氯离子质量浓度为0.22 g/L,氯离子去除率为98.59%,铜离子质量浓度为0.45 g/L,铜离子去除率为95.08%,其他重金属大部分也得到有效去除。净化后的废酸可回用至铜冶炼的生产过程中。  相似文献   

4.
采用电解法产生活性氯,降解废水中的有机物。考察了活性氯产生量的影响因素,并对Ti/RuO2-IrO2-TiO2电极电解实际含氯废水的处理效果进行了研究。实验结果表明:通过增加Cl-浓度和电流密度、减少SO42-浓度和极板间距、降低电解温度的方法能够提高活性氯产生量,从而提高电极降解有机物的效果;对于Cl-浓度为0.005 mol/L、COD为49 mg/L的废水,使用Ti/RuO2-IrO2-TiO2电极,在极板间距为0.5 cm、电解温度为20 ℃、电流密度为20 mA/cm2、初始pH为8.0的条件下电解处理60 min,废水BOD5/COD值由0.04提高到0.25,COD降至24 mg/L,达到DB 11/307—2013《水污染综合排放标准》中排入地表水体污染物B类排放限值(COD≤30 mg/L)的要求。  相似文献   

5.
王凡  马梦蝶  王曦  杨明  李登新 《化工环保》2021,41(2):173-178
采用微纳米气液分散体系对天然气汽车尾气中的复合污染物进行氧化脱除。实验结果表明:CH4、NO和SO2的脱除率均随着吸收液中NaCl、十二烷基硫酸钠(SDS)、Fe2+和Mn2+投加量的增加而先升后降,在酸性和碱性条件下均随着pH的增大呈先升后降的趋势;进气CH4、NO、SO2质量浓度为429,267,571 mg/m3时,最佳脱除条件为吸收液pH 6、NaCl投加量0.5 g/L、SDS投加量4 mg/L、Mn2+投加量2.0 mmol/L,在此条件下CH4、NO和SO2的脱除率分别为85.83%、96.00%和100%。机理研究表明:CH4被微纳米气泡产生的自由基氧化成CO、CO2和H2O,NO氧化成NO3-和NO2-,SO2氧化成SO42-;Fe2+和Mn2+作为催化剂诱导微纳米气泡产生较多自由基。  相似文献   

6.
从铜氨废液中回收铜   总被引:3,自引:1,他引:2  
分别采用化学沉淀法和电解法从电镀污泥水热合成铁氧体后过滤分离的铜氨废液中回收铜。实验结果表明:采用化学沉淀法处理铜氨废液,以体积比为1:1的盐酸调节铜氨废液pH为5.4~6.4,沉淀出碱式氯化铜固体,铜回收率在98%以上,1L铜氨废液可回收碱式氯化铜5.83g(合铜3.50g);采用电解法处理铜氨废液,在电流密度250A/m^2、电解时间5h、电解温度60℃的条件下,1L铜氨废液可回收3.54g铜粉,铜回收率超过99%,铜粉的粒径和纯度均可达到GB5246-85《电解铜粉》的要求。  相似文献   

7.
陈东  曾玉彬  李源  汪勉  李嘉晨 《化工环保》2015,35(5):481-486
以纳米γ-Fe2O3为磁性介质制备了磁性纳米γ-Fe2O3/SiO2,并将其用于水中亚甲基蓝的吸附。表征结果显示:制备的γ-Fe2O3/SiO2呈不规则核壳结构,平均粒径为38 nm,比表面积为74.35 m2/g,比饱和磁化强度为55 A·m2/kg。实验结果表明:γ-Fe2O3/SiO2对亚甲基蓝的吸附适宜在中碱性条件下进行,4 h即可达吸附平衡;在初始亚甲基蓝质量浓度为180 mg/L、γ-Fe2O3/SiO2加入量为2 g/L、初始溶液pH为7.0、吸附温度为298 K的条件下,吸附量最高为25.4 mg/g;共存金属离子会降低吸附效率,而少量的腐殖酸则会促进吸附;吸附过程符合准二级动力学方程,颗粒内扩散不是唯一的控速步骤;等温吸附满足Langmuir模型,该吸附是一个物理吸附过程;用乙醇洗涤的γ-Fe2O3/SiO2重复使用4次时仍能保持约80%的原吸附量。  相似文献   

8.
采用掺硼金刚石(BDD)电极电化学氧化法降解模拟焦化废水中的喹啉,并通过GC-MS技术分析了喹啉的降解机理及途径。实验结果表明:在常温、初始喹啉质量浓度为50.0 mg/L、电解质Na2SO4浓度为0.05 mol/L、模拟废水pH为7、电解时间为2.5 h、电流密度为30 mA/cm2、极板总面积与模拟废水体积的比为160 cm2/cm3的条件下,喹啉降解率接近100%;TOC由初始时的29.43 mg/L降至5.76 mg/L,TOC去除率达80%;COD由初始时的95.25 mg/L降至20.65 mg/L,COD去除率达78%;在降解过程中,首先在喹啉苯环的5位和8位发生羟基化反应,然后苯环发生断裂,形成带有吡啶环的中间产物及羧酸类产物,最后氮杂环开环,生成二氧化碳和水。  相似文献   

9.
以钢铁盐酸酸洗废液为原料,亚硝酸钠为催化剂,氧气为氧化剂,在填料塔中催化氧化制备三氯化铁。考察了反应温度、催化剂加入量和添加方式、循环流量等对制备三氯化铁的影响。实验结果表明,在优化的工艺条件为料液预热温度为60 ℃、催化剂加入量为钢铁盐酸酸洗废液总质量的0.30%、料液循环流量6.0 m3/h的条件下,反应80~120 min,酸洗废液中的Fe2+完全氧化为Fe3+。  相似文献   

10.
选择Al2O3,TiO2,MnO2,Fe3O4 4种金属氧化物对溶液中的对氯苯甲酸(p-CBA)进行催化臭氧氧化降解。催化剂的表征结果显示:TiO2具有最大的比表面积,为93.84 m2/g,Al2O3的比表面积最低,仅为10.28 m2/g;MnO2和Fe3O4表面含有大量强酸性位,故其等电点较低,分别为1.45和1.82。4种催化剂对p-CBA的吸附能力与其比表面积相关,而催化臭氧氧化活性高低却与其等电点的高低顺序一致。Al2O3具有最高的等电点(6.92),也表现出相对较强的催化臭氧氧化活性。在臭氧通量6 mg/min、p-CBA初始质量浓度40 mg/L、Al2O3投加量0.5 g/L、反应时间40 min的条件下,p-CBA去除率达到58.6%,远高于单独臭氧化和吸附过程的去除率。  相似文献   

11.
微生物燃料电池对苯酚的降解及其产电性能   总被引:1,自引:0,他引:1       下载免费PDF全文
构建了单室空气阴极微生物燃料电池(MFC),研究了苯酚含量对以苯酚和葡萄糖为底物的MFC产电性能及苯酚去除率的影响。实验结果表明:当CODB(苯酚贡献的COD)为0时,MFC的运行周期为36 h,最大输出电压为560 m V,最大功率密度为489 m W/m2;CODB为1 000 mg/L时,MFC的运行周期为54 h,最大输出电压为436 m V,最大功率密度为98 m W/m2;当CODB为200 mg/L时,MFC的COD去除率、苯酚去除率和库伦效率(CE)均达到最大,分别为89.7%、99.9%和7.2%,同时,MFC的阳极生物膜产生的氧化峰电流最高,表明在葡萄糖-苯酚双底物对微生物的协同作用下,MFC的阳极生物膜氧化性最强;随着CODB的增大,COD去除率、苯酚去除率和CE均逐渐减小,说明苯酚的抑制作用导致微生物活性降低。  相似文献   

12.
程前  廖文超 《化工环保》2018,38(2):236-241
随着锂离子电池的广泛应用,产生了大量废锂离子电池,其负极活性材料中积累了高品位的锂。锂作为一种稀有金属,对其进行回收利用很有意义。选取了无毒、稳定性好的氨基磺酸作为浸出剂,浸取废锂离子电池负极活性材料中的锂,考察了预处理方式对负极活性材料成分和结构的影响以及浸出条件对锂浸出率的影响。结果表明:600℃下煅烧4 h,可完全去除附着在负极活性材料表面的有机物;在氨基磺酸浓度0.75 mol/L、固液比5 g/L、浸出温度40℃、浸出时间45 min的最佳浸出条件下,负极活性材料中锂浸出率达97.2%。  相似文献   

13.
光电催化氧化法脱色处理刚果红染料废水   总被引:2,自引:0,他引:2       下载免费PDF全文
方涛  徐霞  邓丽娟  曲美洁  吴君  李鑫 《化工环保》2014,34(6):515-519
采用阴极还原法制备了泡沫镍负载纳米ZnO(ZnO/Ni)电极,采用SEM和XRD技术对ZnO/Ni电极进行了表征。以高压汞灯为光源,ZnO/Ni电极为阳极,铂电极为阴极,对模拟刚果红染料废水进行了光电催化脱色处理。考察了催化工艺、电解质种类及浓度、初始废水pH和反应温度等因素对刚果红降解率的影响。表征结果显示, 制备的纳米ZnO呈六方晶系结构,平均粒径为23.6 nm。实验结果表明,当外加电流为1.0 mA时,在初始刚果红质量浓度为30 mg/L、电解质Na2SO4浓度为0.050 mol/L、初始废水pH为5、反应温度为50 ℃的条件下,光电催化反应60 min后,刚果红降解率为86.36%,COD和色度的去除率分别达到70.56%和92.86%。  相似文献   

14.
张磊  刘帅  刘德启 《化工环保》2012,40(3):253-258
采用鸟粪石结晶协同钙盐沉淀法从苯达松生产高浓度含磷废水中回收磷酸盐沉淀物,探讨了磷回收效果的影响因素,并对所得磷酸盐沉淀物进行了定量分析和盆栽对照实验。实验结果表明:在pH为9~10、n(Mg2+)∶n(NH4+)∶n(PO43-)为1.2∶1∶1的最佳条件下加入氯化镁和氯化铵,磷回收率(以磷计)可达95.7%;再按照n(Ca2+)∶n(Mg2+)为0.10加入氯化钙,磷总回收率达到99.1%,上清液中磷质量浓度降至8.7 mg/L;每盆施用3 g磷酸盐沉淀物,对开豆41#具有显著的增效作用,对杂草猪殃殃也有较好的除草效果。  相似文献   

15.
三维电极电Fenton氧化法处理染料废水   总被引:1,自引:0,他引:1       下载免费PDF全文
采用三维电极电Fenton氧化法处理实际染料废水,探究了染料废水处理效果的影响因素。实验结果表明:以钌铱镀层钛电极为阳极、不锈钢板为阴极、粉末活性炭为颗粒电极,在粉末活性炭投加量为2.0 g/L、电流密度为0.5 mA/mm2、极板间距为3 cm、pH为2.0、硫酸亚铁投加量为0.50 g/L的最优工艺条件下,反应2 h后COD、TOC、氨氮、色度的去除率达到最大,分别为62.80%、41.15%、42.48%和95.00%;粉末活性炭作为颗粒电极可使染料废水COD去除率提高18个百分点;重复使用10次的处理效果与第2次基本持平。  相似文献   

16.
以钛涂钌电极为阳极、自制蒽醌修饰石墨毡电极为阴极,对头孢合成废水(COD=25 000~30 000 mg/L、ρ(NH3-N)=850~1 300 mg/L、色度为2 300~2 680度)进行了电化学氧化预处理,优化了电解条件,并对电化学体系的动力学和稳定性进行了分析。实验结果表明:蒽醌的存在可改善电化学氧化降解效果;在电解时间50 min、电流密度0.14 A/cm2、Na2SO4浓度0.1 mol/L、极板间距2 cm、初始废水p H 7.0的条件下,废水的COD、色度、NH3-N的去除率分别可达45.3%,66.9%,33.6%;BOD5/COD由处理前的0.27增至0.40,可生化性得到改善;COD、色度、NH3-N的电化学氧化降解过程均近似符合一级动力学方程;且该电化学体系的应用稳定性良好。  相似文献   

17.
采用混凝—气浮工艺对ABS树脂生产过程中的丁二烯聚合工段和乳液接枝工段混合废水进行预处理,优化了工艺条件。实验结果表明:最佳药剂组合为CaCl2和阳离子型聚丙烯酰胺(FO4440SSH),最佳CaCl2投加量为75 mg/L,最佳FO4440SSH投加量为10 mg/L,最佳废水pH范围为5~7;最优操作条件为以288 r/min的转速搅拌混凝1 min,再以72 r/min的转速搅拌絮凝20 min;混凝阶段的最佳G值为159.9 s-1、GT值为9 594,絮凝阶段的最佳G值为24.5 s-1、GT值为29 400;优化条件下,废水的浊度与COD去除率均可达98%以上。  相似文献   

18.
采用分步化学沉淀法分别脱除并回收磷酸铁生产废水中的高浓度磷酸根和硫酸根。实验结果表明:在以n(Fe~(3+))∶n(PO_4~(3-))=1.0的比例加入硫酸铁、反应时间为40 min、反应温度为25℃、废水初始p H为8.17、反应30 min时二次调节废水p H至5.50的条件下,磷酸根去除率可达98%以上,所得沉淀中Fe和P的质量分数分别为36.77%和18.81%,成分简单,回收价值高;采用氢氧化钙作为沉淀剂,在n(Ca~(2+))∶n(SO_4~(2-))=1.0的条件下可将废水中硫酸根质量浓度由78.62 g/L降至2.16 g/L,硫酸根去除率为97.3%,硫酸钙回收量为120.2 g/L;最终出水的磷酸根质量浓度小于0.5 mg/L,满足GB 8978—1996《污水综合排放标准》的一级标准。  相似文献   

19.
采用零价铁(ZVI)活化过硫酸钠(PS)产生·SO_4~-,以·SO_4~-为氧化剂深度处理电镀添加剂生产废水。考察了废水p H、n(ZVI)∶n(PS)、c(S_2O_8~(2-))和反应温度对废水COD去除率的影响。实验得出废水处理的最佳工艺条件:废水p H为5.0,n(ZVI)∶n(PS)=1.00,c(S_2O_8~(2-))=15 mmol/L,反应温度为50℃。在此最佳工艺条件下反应60 min,COD去除率达到76.8%,出水COD约为42 mg/L,满足GB 18918—2002《城镇污水处理厂污染物排放标准》的一级标准要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号