首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Municipal solid waste management (MSWM) constitutes one of the most crucial health and environmental problems facing authorities in the Arabian Gulf. Recent literature on current solid waste management (SWM) in Qatar has been reviewed in this paper, and a focused study has been carried out to provide a review on the total amount of municipal solid waste generated, stored, collected, disposed as well as the constituents of the waste. The analysis showed that Qatar produced around 2,000,000 tons of solid municipal waste annually, corresponding to a daily generation rate per capita of about 2.5 kg. About 60% of MSW is organic material and about 300 kg is composed daily. Landfill and composting is considered the most appropriate waste disposal techniques in Qatar. Um-Al-Afai landfill has nearly 80% of MSW. Because of the increased migration in Qatar, there is a sharp rise in the volume and also in the variety of solid waste. It is important to alleviate societal concerns over the increased rate of resource consumption and waste production; thus, policy makers have encouraged recycling and reuse strategies to reduce the demand for raw materials and to decrease the quantity of waste going to landfill. An example of the benefit of mechanical recycling of plastics compared to land filling and composting was conducted by GaBi 4 life cycle analysis tool which showed the benefits to the global warming and human toxicity. Recycling is the favored solution for plastic waste management, because it has a lower environmental impact on the defined impact categories, from Global Warming Potential (GWP) and Human Toxicity Potentials (HTP) indicators.  相似文献   

2.
The increase in population, the rapid economic growth and the rise in community living standards accelerate municipal solid waste (MSW) generation in developing cities. This problem is especially serious in Pudong New Area, Shanghai, China. The daily amount of MSW generated in Pudong was about 1.11 kg per person in 2006. According to the current population growth trend, the solid waste quantity generated will continue to increase with the city's development. In this paper, we describe a waste generation and composition analysis and provide a comprehensive review of municipal solid waste management (MSWM) in Pudong. Some of the important aspects of waste management, such as the current status of waste collection, transport and disposal in Pudong, will be illustrated. Also, the current situation will be evaluated, and its problems will be identified.  相似文献   

3.
Integrated solid waste management based on the 3R approach   总被引:1,自引:0,他引:1  
Integrated solid waste management (ISWM) based on the 3R approach (reduce, reuse, and recycle) is aimed at optimizing the management of solid waste from all the waste-generating sectors (municipal, construction and demolition, industrial, urban agriculture, and healthcare facilities) and involving all the stakeholders (waste generators, service providers, regulators, government, and community/neighborhoods). This article discusses the concept of solid waste management (SWM). Initially, SWM was aimed at reducing the risks to public health, and later the environmental aspect also became an important focus of SWM. Recently, another dimension is becoming a critical factor for SWM, i.e., resource conservation and resource recovery. Hence, the 3R approach is becoming a guiding factor for SWM. On the one hand, 3R helps to minimize the amount of waste from generation to disposal, thus managing the waste more effectively and minimizing the public health and environmental risks associated with it. On the other hand, resource recovery is maximized at all stages of SWM. Lately, the new concept of ISWM has been introduced to streamline all the stages of waste management, i.e., source separation, collection and transportation, transfer stations and material recovery, treatment and resource recovery, and final disposal. It was originally targeted at municipal solid waste management (MSWM), but now the United Nations Environment Programme (UNEP) is promoting this concept to cover all waste generating sectors to optimize the level of material and resource recovery for recycling as well as to improve the efficiency of waste management services. The ISWM concept is being transformed into ISWM systems to replace conventional SWM systems. This article further discusses the implementation process for ISWM. The process includes a baseline study on the characterization and quantification of waste for all waste generating sectors within a city, assessment of current waste management systems and practices, target setting for ISWM, identification of issues of concern and suggestions from stakeholders, development of a draft ISWM plan, preparation of an implementation strategy, and establishment of a monitoring and feedback system. UNEP is assisting member countries and their cities to develop an ISWM plan covering all the waste generating sectors within a specific geographical or administrative area such as a city or municipality. This umbrella approach is useful to generate sufficient volumes of recycling materials required to make recycling industries feasible. This is also helpful for efficient reallocation of resources for SWM such as collection vehicles, transfer stations, treatment plants, and disposal sites. UNEP is assisting cities to develop and implement ISWM based on the 3R approach. These experiences could be useful for other countries to develop and implement ISWM to achieve improved public health, better environmental protection, and resource conservation and resource recovery.  相似文献   

4.
随着我国经济快速发展及城市化水平提升,城市生活垃圾产量越来越大,焚烧逐渐成为城市生活垃圾处理的主要方式。但焚烧会产生大量的垃圾焚烧飞灰(以下简称飞灰),飞灰属于危险废物。论述了飞灰的来源、成分、特性及危害,介绍了飞灰的处理处置技术:水泥固化技术、化学药剂稳定化技术、熔融固化技术、水热稳定化技术和水泥窑协同处理技术,并分析这几类处理技术的优缺点。同时,介绍了将飞灰用作生产水泥材料、建筑材料、烧制多孔陶粒轻骨料及制备混凝土几种资源化利用途径。对今后飞灰的处理及资源化利用提出了展望。  相似文献   

5.
油气开采钻井固体废物处理与利用研究现状   总被引:1,自引:0,他引:1       下载免费PDF全文
对比分析了我国部分地区油气开采钻井固体废物的污染特征,对普通钻井固体废物和含油钻井固体废物的无害化处理与资源化利用技术分别进行梳理和分析,主要包括固化处理技术、生物处理技术、不落地处理技术、资源化利用技术、萃取技术、热解析技术和组合处理技术等。结合当前存在的主要问题针对性地提出了4条对策建议:加强源头控制,减少钻井固体废物产生量;对钻井固体废物进行分质分级区别处理和利用;开发高效、低成本、低能耗的钻井固体废物处理技术,发展联合处理工艺;制定相关政策和标准,加强油气田污染治理的事中事后监管。  相似文献   

6.
This article reviews recent progress in material flow analysis and its use in providing resource productivity indicators and is based on developments in Japanese policy toward a sound material-cycle society and in international forums such as within the Organisation for Economic Development and Cooperation, covering both institutional and methodological issues. Indicators derived from economy-wide material flow accounts such as direct material inputs are useful to demonstrate the absolute size of a physical economy and to reinforce the need to both reduce consumption of natural resources and limit waste generation. Interpretation of material flows as resources and potential environmental impacts is discussed, and linkages between the size of material flows and specific environmental impacts and damage must be further elaborated for use in environmental policy. Lessons learned from the practical use of resource productivity indicators are also discussed. Additional indicators are needed that can be used to evaluate the performance of microeconomic contributors. The need for an integrated approach that links upstream resource issues and downstream waste issues through the 3Rs concept or the circular economy/society concept is attracting increasing attention. Consequently, the accumulation of reliable scientific knowledge and data in this field in a fully international context is essential.  相似文献   

7.
Piles of steel slag, a solid waste generated from the iron and steel industry, could be seen due to no utility found for the past century. Steel slag has now gained much attention because of its new applications. The properties of slag greatly influence its use and thus had got varied applications. The chemical composition of steel slag varies as the mineral composition of raw material such as iron ore and limestone varies. This paper reviews the characteristics of steel slag and its usage. The paper reviews recent developments in well-known applications to the steel slag such as aggregate in bituminous mixes, cement ingredient, concrete aggregate, antiskid aggregate, and rail road ballast. This paper also reviews novel uses such as mechanomutable asphalt binders, building material, green artificial reefs, thermal insulator, catalyst and ceramic Ingredient. The review is also done on utilization of solid waste for waste management by the novel methods like landfill daily cover material, sand capping, carbon sequestration, water treatment and solid waste management. Review also shows recovery of pure calcium carbonate and heavy metals from slag, providing opportunity for revenue generation. Steel slag once traded as free to use by steel industries is now sold in the market at some price. Its utilization is of great economic significance as it also contributes to the reduction of solid waste.  相似文献   

8.
9.
A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.  相似文献   

10.
One of the challenges faced by waste management authorities is determining the amount of waste generated by households in order to establish waste management systems, as well as trying to charge rates compatible with the principle applied worldwide, and design a fair payment system for households according to the amount of residential solid waste (RSW) they generate. The goal of this research work was to establish mathematical models that correlate the generation of RSW per capita to the following variables: education, income per household, and number of residents. This work was based on data from a study on generation, quantification and composition of residential waste in a Mexican city in three stages. In order to define prediction models, five variables were identified and included in the model. For each waste sampling stage a different mathematical model was developed, in order to find the model that showed the best linear relation to predict residential solid waste generation. Later on, models to explore the combination of included variables and select those which showed a higher R(2) were established. The tests applied were normality, multicolinearity and heteroskedasticity. Another model, formulated with four variables, was generated and the Durban-Watson test was applied to it. Finally, a general mathematical model is proposed to predict residential waste generation, which accounts for 51% of the total.  相似文献   

11.
Municipal solid waste management (MSWM) in China warrants particular attention as China has become the largest MSW generator in the world and the total amount of MSW it produces continues to increase. In recent years, central and local governments have made great efforts to improve MSWM in China. New regulations and policies have been issued, urban infrastructure has been improved, and commercialization and international cooperation have been encouraged. Considering these developments, an overview is necessary to analyze the current state as well as new opportunities and challenges regarding MSWM in China. This paper shows that since the late 1990s, the amount of MSW collected has been largely decoupled from economic growth and incineration has become an increasingly widespread treatment method for MSW. We identify and discuss four major challenges and barriers related to China’s MSWM, and propose an integrated management framework to improve the overall eco-efficiency of MSWM.  相似文献   

12.
This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.  相似文献   

13.
The aim of this study is to investigate waste streams as a source of recyclable raw material for fiber composite production. Globally, vast volumes of waste are produced daily that are not recycled effectively. In this work, three different raw material sources are examined; industrial, construction and municipal solid waste streams. All three sources produce wastes that are currently underutilized. Usage areas for the waste material include use as a reinforcing fiber, as part of the plastic matrix or as a filler. The industrial sector produces more homogenous waste, while waste from municipalities is mixed. Irregular material flow, the varying condition of the waste and different pretreatments used pose difficulties for recycling. Furthermore, some materials are industry-specific and may be produced in only certain areas. Despite these difficulties, huge amount of potentially useful exploitable waste is available and using different waste streams as a part of wood-plastic composite production can reduce waste volumes disposed to landfill.  相似文献   

14.
Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements.  相似文献   

15.
Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3kg/household/day and 0.25kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r(xy)=0.236, p<0.05), education level (r(xy)=0.244, p<0.05) and monthly income (r(xy)=0.671, p<0.01) of the households. Municipal authorities are usually the responsible agencies for solid waste collection and disposal, but the magnitude of the problem is well beyond the ability of any municipal government to tackle. Hence dwellers were found to take the service from the local waste management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.  相似文献   

16.
Solid waste management in Macao: practices and challenges   总被引:2,自引:0,他引:2  
The rapid economic development and population growth in Macao have resulted in a large increase in refuse generated over the past decade. In 2003, the quantity of solid waste generated reached 249,255 tons, corresponding to 1.52 kg/day per capita. This figure has been gradually increasing. Domestic solid waste is the primary source of solid waste generation. The data showed that a considerable amount of the solid waste generated can be recycled and reutilized. Due to Macao's small geographic area and high cost of land, landfilling has the lowest priority for waste disposal. Solid waste incineration has been given a top priority over other waste disposal methods although it is much more expensive. In the last decade, more than 80% of the total waste in Macao was incinerated. However, the incineration capacity of the Macao Incineration Plant is going to reach its saturation earlier than expected. Waste minimization, the establishment of an effective waste collection and disposal fee system, and alternate ways dealing with the limited capacity of waste treatment facilities are regarded to be major challenges in the future.  相似文献   

17.
In publicly available waste reports only the totals of waste produced for municipal, or industry waste typically feature. The types of waste generated and the generating industry sector are usually omitted. We propose the direct inputs waste estimation methodology to create a detailed estimate of municipal solid waste and industrial solid waste for an economy (including sectoral and waste type disaggregation) using a top-down estimation methodology that links the aforementioned limited publicly available waste data with an input–output table’s direct inputs (A) matrix. We then provide an application of the direct inputs waste estimation methodology upon the 2008 waste generation of Australia resulting in a 344 industry sector and 14 waste type data set. The resulting estimation gives unique insights into Australian waste generation; including the large C&I tonnages of waste estimated to be produced from the Service sectors such as the Education, Hospitality, and Health sectors as well as the large amount of food waste produced throughout the economy.  相似文献   

18.
The production potential of refuse derived fuel (RDF) in the largest industrial city of Korea is discussed. The purpose of this study is to evaluate the energy potential of the RDF obtained from utilizing combustible solid waste as a fuel resource. The total amount of generated solid waste in the industrial city was more than 3.3 million tonnes, which is equivalent to 3.0 tonnes per capita in a single year. The highest amount of solid waste was generated in the city district with the largest population and the biggest petrochemical industrial complex (IC) in Korea. Industrial waste accounted for 89% of the total amount of the solid waste in the city. Potential RDF resources based on combustible solid wastes including wastepaper, wood, rubber, plastic, synthetic resins and industrial sludge were identified. The amount of combustible solid waste that can be used to produce RDF was 635,552 tonnes/yr, consisting of three types of RDF: 116,083 tonnes/yr of RDF-MS (RDF from municipal solid waste); 146,621 tonnes/yr of RDF-IMC (RDF from industrial, municipal and construction wastes); and 372,848 tonnes/yr of RDF-IS (RDF from industrial sludge). The total obtainable energy value from the RDF resources in the industrial city was more than 2,240,000 × 106 kcal/yr, with the following proportions: RDF-MS of 25.6%, RDF-IMC of 43.5%, and RDF-IS of 30.9%. If 50% or 100% of the RDF resources are utilized as fuel resources, the industrial city can save approximately 17.6% and 35.2%, respectively, of the current total disposal costs.  相似文献   

19.
This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.  相似文献   

20.
The draft legislation on e-waste prepared by the Chinese national government assigns management responsibility to local governments. It is an urgent task for the municipal government to plan an effective system as soon as possible to divert the e-waste flow from the existing informal e-waste recycling processes. This paper presents a case study implemented in Beijing, the capital city of China, with the purpose of predicting the amount of obsolete equipment for five main kinds of electronic appliances from urban households and to analyse the flow after the end of their useful phase. The amount to be handled was 885,354 units in 2005 and is predicted to double by 2010. Due to consumption growth and the expansion of urbanization it is estimated that the amount will increase to approximate 2,820,000 units by 2020: 70% of the obsolete appliances will be awaiting collection for possible recycling, 7% will be stored at the owner's home for 1 year on average and 4% will be discarded directly and enter the municipal solid waste collecting system. The remaining items will be reused for about 3 years on average after the change of ownership. The results of this study will assist the waste management authorities of Beijing to plan the collecting system and facilities needed for management of e-waste generated in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号