首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Films of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(propylene) (PP), PP/PHBV (4:1), blends were prepared by melt-pressing and investigated with respect to their microbial degradation in soil after 120 days. Biodegradation of the films was evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The biodegradation and/or bioerosion of the PP/PHBV blend was attributed to microbiological attack, with major changes occurring at the interphases of the homopolymers. The PHBV film was more strongly biodegraded in soil, decomposing completely in 30 days, while PP film presented changes in amorphous and interface phase, which affected the morphology.  相似文献   

2.
A series of polyhydroxyalkanoates (PHA), all containing 1% nucleating agent but varying in structure, were melt-processed into films through single screw extrusion techniques. This series consisted of three polyhydroxybutyrate (PHB) and three polyhydroxybutyrate-valerate (PHBV) resins with varying valerate content. Processing parameters of temperature in the barrel (165–173 °C) and chill rolls (60 °C) were optimized to obtain cast films. The gel-permeation chromatography (GPC) results showed a loss of 8–19% of the polymer’s initial molecular weight due to extrusion processing. Modulated differential scanning calorimetry (MDSC) displayed glass transition temperatures of the films ranging from −4.6 to 6.7 °C depending on the amount of crystallinity in the film. DSC data were also used to calculate the percent crystallinity of each sample and slightly higher crystallinity was observed in the PHBV series of samples. X-ray diffraction patterns did not vary significantly for any of the samples and crystallinity was confirmed with X-ray data. Dynamic mechanical analysis (DMA) verified the glass transition trends for the films from DSC while loss modulus (E′) reported at 20 °C showed that the PHBV (3,950–3,600 MPa) had the higher E′ values than the PHB (3,500–2,698 MPa) samples. The Young’s modulus values of the PHB and PHBV samples ranged from 700 to 900 MPa and 900 to 1,500 MPa, respectively. Polarized light microscopy images revealed gel particles in the films processed through single-screw extrusion, which may have caused diminished Young’s modulus and tensile strength of these films. The PHBV film samples exhibited the greatest barrier properties to oxygen and water vapor when compared to the PHB film samples. The average oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) for the PHBV samples was 247 (cc-mil/m2-day) and 118 (g-mil/m2-day), respectively; while the average OTR and WVTR for the PHB samples was 350 (cc-mil/m2-day) and 178 (g-mil/m2-day), respectively. Biodegradation data of the films in the marine environment demonstrated that all PHA film samples achieved a minimum of 70% mineralization in 40 days when run in accordance with ASTM 6691. For static and dynamic incubation experiments in seawater, microbial action resulting in weight loss as a function of time showed all samples to be highly biodegradable and correlated with the ASTM 6691 biodegradation data.  相似文献   

3.
For investigating the relationship between thermal properties and biodegradability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), several films of PHBV containing different polyhydroxyvalerate (HV) fractions were subjected to degradation in different conditions for up to 49 days. Differential scanning calorimetry (DSC), thermogravimetry (TG), specimen weight loss and scanning electron microscopy (SEM) were performed to characterize the thermal properties and enzymatic biodegradability of PHBV. The experimental results suggest that the degradation rates of PHBV films increase with decreasing crystallinity; the degradability of PHBV occurring from the surface is very significant under enzymatic hydrolysis; the crystallinity of PHBV decreased with the increase of HV fraction in PHBV; and no decrease in molecular weight was observed in the partially-degraded polymer.  相似文献   

4.
The biodegradation behavior of PCL film with high molecular weight (80,000 Da) in presence of bacterium Alcaligenes faecalis and the analysis of degraded polymer film have been carried out. Thin Films of PCL were prepared by means of solution casting method and the bacterial degradation behavior was carried in basal medium, in presence of bacteria with time variation after UV treatment. It was observed that after UV treatment the degradation of polymer film was increased and the degradation rate followed a three steps degradation mechanism. The degraded polymer film was analyzed by means of Differential Scanning Calorimeter (DSC), Thermo Gravimetric Analyzer (TGA) and Fourier Transform Infrared Spectroscope (FTIR). DSC results revealed that at the initial stages of the degradation up to 15–20 days, the bacterium preferentially degrades the amorphous parts of the polymer film over the crystalline zone. Thermo gravimetric analysis highlighted the low temperature stability of degraded films with extent of degradation. FTIR results showed the chain scission mechanism of the polymer chains and also supported the preferential degradation of amorphous phase over crystalline phase in the initial stages of the degradation.  相似文献   

5.
Injection molded specimens were prepared by blending poly (hydroxybutyrate-co-valerate) (PHBV) with cornstarch. Blended formulations incorporated 30% or 50% starch in the presence or absence of poly-(ethylene oxide) (PEO), which enhances the adherence of starch granules to PHBV. These formulations were evaluated for their biodegradability in natural compost by measuring changes in physical and chemical properties over a period of 125 days. The degradation of plastic material, as evidenced by weight loss and deterioration in tensile properties, correlated with the amount of starch present in the blends (neat PHBV < 30% starch < 50% starch). Incorporation of PEO into starch-PHBV blends had little or no effect on the rate of weight loss. Starch in blends degraded faster than PHBV and it accelerated PHBV degradation. Also, PHBV did not retard starch degradation. After 125 days of exposure to compost, neat PHBV lost 7% of its weight (0.056% weight loss/day), while the PHBV component of a 50% starch blend lost 41% of its weight (0.328% weight loss/day). PHB and PHV moieties within the copolymer degraded at similar rates, regardless of the presence of starch, as determined by 1H-NMR spectroscopy. GPC analyses revealed that, while the number average molecular weight (Mn) of PHBV in all exposed samples decreased, there was no significant difference in this decrease between neat PHBV as opposed to PHBV blended with starch. SEM showed homogeneously distributed starch granules embedded in a PHBV matrix, typical of a filler material. Starch granules were rapidly depleted during exposure to compost, increasing the surface area of the PHBV matrix.  相似文献   

6.
Poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a biodegradable polymer synthesized in microorganisms. The application of PHBV is limited by certain material disadvantages. Poly(ε-caprolactone) (PCL) possesses excellent thermodynamic and mechanical properties and was used to modify PHBV in the presence of triethyl citrate (TEC) and dicumyl peroxide (DCP), which was used as plasticizer and grafting agent, respectively. The effects of PCL and additive agents on the mechanical, thermal, amphipathic and degradability behaviors of the blends were investigated. The results showed that the mechanical properties of the PHBV blends improved by PCL incorporation and improved even further after TEC and DCP addition. The addition of DCP could not induce an increase in crystallization temperature but improved the crystallization degree of the blends. The presence of hydrophilic groups in TEC leads to an apparent increases in the hydrophilicity of the PHBV blends. A PHBV/PCL blend (40/60) with TEC (20 wt.%) and DCP (0.5 wt.%) was chosen for its good mechanical properties and hydrophilicity. The chosen ratio of the blends was also shown a preferable degradation activity by biodegradation assay using Pseudomonas mendocina. The addition of TEC and DCP has no conspicuous negative effect on the biodegradation.  相似文献   

7.
Blends based on different ratios of starch (35–20%) and plasticizer (sugar; 0–15%) keeping the amount of poly(vinyl alcohol) (PVA) constant, were prepared in the form of thin films by casting solutions. The effects of gamma-irradiation on thermal, mechanical, and morphological properties were investigated. The studies of mechanical properties showed improved tensile strength (TS) (9.61 MPa) and elongation at break (EB) (409%) of the starch-PVA-sugar blend film containing 10% sugar. The mechanical testing of the irradiated film (irradiated at 200 Krad radiation dose) showed higher TS but lower EB than that of the non-radiated film. FTIR spectroscopy studies supported the molecular interactions among starch, PVA, and sugar in the blend films, that was improved by irradiation. Thermal properties of the film were also improved due to irradiation and confirmed by thermo-mechanical analysis (TMA), differential thermo-gravimetric analysis (DTG), differential thermal analysis (DTA), and thermo-gravimetric analysis (TGA). Surface of the films were examined by scanning electron microscope (SEM) image that supported the evidence of crosslinking obtained after gamma irradiation on the film. The water up-take and degradation test in soil of the film were also evaluated. In this study, sugar acted as a good plasticizing agent in starch/PVA blend films, which was significantly improved by gamma radiation and the prepared starch-PVA-sugar blend film could be used as biodegradable packaging materials.  相似文献   

8.
Starch granules were modified with trisodium trimetaphosphate (TSTP) and characterized by P31-NMR, FTIR and DSC. Seventy-micron films were prepared from modified starch and polycaprolactone blends by solvent casting technique. Three different types of films—PCL (100% polycaprolactone), MOD-ST/PCL (50% modified starch and 50% polycaprolactone blend) and NONMOD-ST/PCL (50% nonmodified starch and 50% polycaprolactone blends)—were prepared, and their thermal, mechanical, and morphologic properties were investigated to show the increased performance of PCL with the addition of starch and also the effect of modification. It was observed that with the addition of starch the Young's modulus of polycaprolactone was increased and became less ductile, whereas tensile strength and elongation at break values decreased. Biodegradation of these films was inspected under different aerobic environments with the presence of Pseudomonas putida, activated sludge, and compost. It was observed that whereas P. putida had almost no effect on degradation during 90 days, with the presence of activated sludge, considerable deformation of films was observed even in the first 7 days of degradation. In a compost environment, degradation was even faster, and all polymer films were broken into pieces within first 7 days of degradation and no film remained after 15 days.  相似文献   

9.
The potential use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/graphite nanosheets (GNS) as a biodegradable nanocomposite has been explored. PHBV/GNS nanocomposites films were prepared by solution casting at various concentrations of GNS—0.25, 0.50 and 1.00 wt% GNS. The films were exposed to artificial ultraviolet radiation (UV) during 52 h. The effect of GNS on PHBV photodegradation was investigated and compared to neat PHBV film. The artificial photodegradation induced changes in physical (weight loss), chemical carbonyl index by Fourier transform infrared spectroscopy, thermal degree of crystallinity and melting temperature by differential scanning calorimetry and morphological scanning electron microscopy characteristics. Based on the results obtained from aforementioned analyzes it was verified that GNS inhibits the oxidative degradation of PHBV matrix.  相似文献   

10.
Blends of the bacterially produced polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with cellulose acetate esters (CAE) further substituted with propionyl or butyryl groups (degree of substitution: 2.60 propionyl and 0.36 acetyl or 2.59 butyryl and 0.36 acetyl, respectively) were exposed for 4 months to activated sludge to determine their biodegradability. Samples of such blends made by solution-mixing and solvent-casting had complex morphologies in which both individual components as well as a miscible blend phase were present. Additionally, the two opposite surfaces of solvent-cast films showed both physical and chemical differences. After 2 months, samples of pure PHBV had degraded by more than 98% (15 mg/cm2 of surface area), whereas a pure CAE sample had degraded less than 1% (<0.2 mg/cm2). Samples containing 25% CAE lost less than 40% of their initial weights (6 mg/cm2) over the total 4-month period. Samples with 50% CAE lost up to 16% weight (2 mg/cm2), whereas those containing 75% CAE lost only slightly more weight than corresponding sterile control samples (1 mg/cm2). NMR results confirm that weight loss from samples containing 25% CAE resulted only from degradation of PHBV and that the surface of samples became enriched in CAE. Solvent-cast film samples containing equal amounts of PHBV and CAE degraded preferentially on the surface which formed at the polymer-air interface. Scanning electron microscopy and attenuated total reflectance infrared spectroscopy revealed this surface to have a rougher texture and a greater PHBV content.  相似文献   

11.
Because environmental pollution caused by plastic waste is a major problem investigations concerning biodegradable packaging are important and required. In this study, the biodegradation of PCL composite films with organic (glycerol monooleate and oleic acid) and inorganic additives (organo nano clay) was investigated to understand which additive and the amount of additive was more effective for biodegradation. The relationship between the degree of crystallinity and the effect of additives on the biodegradability of polycaprolactone (PCL) was examined. PCL composite films were prepared using organo nano clay (0.1–0.4–1–3 wt%) and oleic acid (1–3–5 wt%) or GMO (1–3–5 wt%). The 35 films prepared with PCL (P), clay (C), oleic acid (O), or glycerol monooleate (G) are coded as P_C#wt%_O (or G)#wt%. The composite films, P_C0.4_O5 contains 0.4 wt% clay and 5 wt% oleic acid and the P_C3_G1 contains 3 wt% clay and 1 wt% glycerol monooleate. The biodegradation of PCL films in simulated soil was studied for 36 months. The films were periodically removed from the simulated soil and film thicknesses, weight losses, visual changes, crystal structures, and a functional group analyses were performed. PCL composite films are separated into three groups, depending on degradation time, (1) films that degraded before 8 months (fast degradation), (2) films that degraded around 24 months (similar to neat PCL), and (3) films that take longer to degrade (slow degradation). The films in the first group are PCL films with 1 and 3 wt% clay additive and they begin to biodegrade at the 5th month. However, a composite film of PCL with only 0.4 wt% clay and 5 wt% GMO addition has the shortest degradation time and degraded in 5 months. The films in the last group are; P_G3, P_G5, P_C0.1, P_C0.1_O1, and P_C0.1_O5 and they took around 30 months for biodegradation. It was observed that increasing the organo nanoclay additive increases the biodegradability by disrupting the crystal structure and causing a defective crystal formation. The addition of GMO with organo nano clay also accelerates biodegradation. The addition of organo nano clay in an amount as small as 0.1 wt% acts as the nucleating agent, increases the degree of crystallinity of the PCL composites, and slows the biodegradation period by increasing the time.  相似文献   

12.
Chitosan was dissolved in 2?% aqueous acetic acid solution and the films were prepared by solution casting. Values of tensile strength (TS), tensile modulus (TM), elongation at break (Eb?%) and water vapor permeability (WVP) of the chitosan films were found to be 30?MPa, 450?MPa, 8?% and 4.7?g?mm/m2?day?kPa, respectively. Poly(caprolactone) (PCL) films were prepared from its granules by compression molding and the values of TS, TM, Eb and WVP were 14?MPa, 220?MPa, 70?% and 1.54?g?mm/m2?day?kPa, respectively. PCL was reinforced with chitosan films, and composite films were prepared by compression molding. Amount of chitosan in the composite films varied from 10 to 50?% (w/w). It was found that with the incorporation of chitosan films in PCL, both the values of TS and TM of composite films increased significantly. The highest mechanical properties were found at 50?% (w/w) of chitosan content. The Oxygen transmission rate (OTR) of composite film was found to decrease significantly than PCL films. Thermal properties of the composite were also improved as compared to PCL. The water uptake test of the composite also showed promising results with a good stability of composite films. The interface of the composite was investigated by scanning electron microscopy and showed good interfacial adhesion between PCL and chitosan films.  相似文献   

13.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   

14.
In order to assess feasibility of tropical starches (sago and cassava starches) as biodegradable plastic materials, blending with poly(-caprolactone) (PCL), a biodegradable polymer, was carried out. It was confirmed that the physical properties (tensile strength and elongation) of PCL/sago and PCL/cassava blends were similar to those of PCL/corn blend, suggesting that sago and cassava starches can also be blended with PCL for production of biodegradable plastic. However, the properties of all PCL/starch blends were still low compared with those of polyethylene. Enzymatic degradability evaluation showed that lipase degradation of PCL and-amylase degradation of starch increased as the starch content in the blend increased. Burial test of the blends for 1, 3, and 5 months was carried out and the rate of degradation of the PCL/sago blend was confirmed to be slower than those of PCL/corn and PCL/cassava blends. Observation of the film blends structure by scanning electron microscope revealed that the starch was dispersed in a PCL continuous phase. Furthermore, changes in the film surface before and after enyzme treatments were observed.  相似文献   

15.
This paper investigates the effects of the incorporation of lignin and small quantities of epoxidized natural rubber (ENR) as an impact modifying agent on blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL). The addition of lignin resulted in a slight improvement of flexural strength and modulus of the ternary blending system. Incorporation of ENR into the blend resulted in an increase in notched Izod impact strength from 40 to 135% depending on the concentration of ENR. The addition of lignin into the blend resulted in an improvement of thermal stability of the ternary blend system. Morphological analysis showed a good dispersion of PHBV phases and lignin within the PCL matrix. Rheological characterization revealed that the presence of lignin resulted in increased storage modulus of the bioblend.  相似文献   

16.
Degradation of atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB) binary blends with natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV, 12 mol% of 3HV units), has been investigated and compared with plain PHBV in the compost containing activated sludge and under marine exposure conditions in the dynamic water of the Baltic Sea. Characteristic parameters of compost and the Baltic Sea water were monitored during the incubation period (6 weeks) and their influence on the degree of biodegradation is discussed. After specified degradation times of the experiments the weight loss of the samples, surface changes, changes in molecular weight and polydispersity as well as changes of the composition and thermo-mechanical properties of the blends have been evaluated. Macroscopic observations of the samples were accompanied by investigations using optical microscopy, size-exclusion chromatography (SEC), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and tensile testing. The degree of degradation of blends of a-PHB with PHBV depends on the blend composition and environmental conditions. In both environments studied the weight loss of plain PHBV was more significant than changes the molecular weight. In both environments only enzymatic degradation of the blends, which proceeds via surface erosion mechanisms, was observed during the incubation period.  相似文献   

17.
Biodegradable films were successfully prepared by using cornstarch (CS), chemically modified starch (RS4), polyvinyl alcohol (PVA), glycerol (GL), and citric acid (CA). The physical properties and biodegradability of the films using CS, RS4, and additives were investigated. The results of the investigation revealed that the RS4-added film was better than the CS-added film in tensile strength (TS), elongation at break (%E), swelling behavior (SB) and solubility (S). Especially, the RS4/PVA blend film with CA as an additive showed physical properties superior to other films. Furthermore, when the film was dried at low temperature, the properties of the films clearly improved because the hydrogen bonding was activated at low temperature. The biodegradation of films was carried out using the enzymatic, microbiological and soil burial test. The enzyme used in this study was amyloglucosidase (AMG), α-amylase (α-AM) and β-amylase (β-AM). At the enzymatic degradation test, the GL-added films had an approximately 60% degradation, while the CA-added films were degraded about 25%. The low degradation value on CA-added film is attributed to low pH of film added CA that deactivated the enzymatic reaction. The microbiological degradation teat was performed by using Bacillus subtilis and Aspergillus niger.  相似文献   

18.
Shellac (SL) films were prepared by casting and were grafted with various acrylic monomers of different functionalities using gamma radiation. Different formulations of shellac with varying concentrations (3, 5 and 7%) of these acrylic monomers such as 2-hydroxyethyl methacrylate (HEMA), 2-ethylhexyl acrylate (EHA) and 1,4-butanediol diacrylate (BDDA) in methanol were prepared. The pure shellac and other treated films were then irradiated under gamma radiation (Co-60) at different doses (0.5–5 kGy) at a dose rate of 3.5 kGy/h where 1 Gy = 1 J/kg = 100 rads. The mechanical properties like tensile strength (TS) and elongation at break (Eb) of the prepared films were studied. The mechanical properties of the irradiated shellac films demonstrated superior values. Among the formulations, shellac grafted with BDDA (SL-g-BDDA) showed the highest TS and Eb values which were 543 and 168% higher than those of raw shellac films, respectively. The water uptake behavior of raw and treated films was also studied. The raw film showed 11% water uptake but HEMA containing film showed 67%. In the soil burial test, HEMA containing shellac film was rapidly degraded than other raw, EHA and BDDA grafted films. Thermal properties indicated that grafting of acrylic monomers decreased the melting temperature of the pure shellac films.  相似文献   

19.
Neat poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) films and PLLA/PDLA blend films were prepared by solution casting, and their photodegradation by UV-irradiation was investigated using wide-angle X-ray scattering (WAXS), gel permeation chromatography, differential scanning calorimetry, tensile testing, and polarized optical microscopy. The PLLA/PDLA blend film was more photodegradation-resistant than the neat PLLA and PDLA films when photodegradation was monitored by molecular weight, melting temperature, and WAXS crystalline peak positions. This indicates that the chains in both amorphous and crystalline regions of the PLLA/PDLA blend film were photo-cleavage-resistant compared to those of the neat PLLA and PDLA films. The changes in melting temperature and WAXS crystalline peak positions before and after photodegradation respectively indicated the increased crystalline lattice disorder and the decreased crystalline lattice sizes of the neat PLLA and PDLA films, whereas these changes were insignificant for the blend films. Photodegradation caused no significant change in tensile properties, with the exception of significant decreases in the tensile strength and elongation at break of PLLA/PDLA blend film. However, the tensile strength and elongation at break of the PLLA/PDLA blend film retained higher values compared to those of the neat PLLA and PDLA films during photodegradation. In spite of the slower photodegradation of the PLLA/PDLA blend film traced by M n, T m, and WAXS crystalline peak positions than that of neat PLLA and PDLA films, the rapid decrease in tensile strength and elongation at break of the former than that of the latter should be due to the highly-ordered structural difference between them, i.e., the three dimensional dry gel of the former and the spherulites of the latter.  相似文献   

20.
The effect of lignosulfonate on poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, was studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The PHBV/lignosulfonate samples were prepared by melt mixing in an internal mixer. SEM showed that PHBV/lignosulfonate samples present a cracked surface that is more intense in mixtures with high lignosulfonate proportions. According to DSC, melting and glass transition temperatures of the PHBV matrix decrease with lignosulfonate addition. The same effect was observed for melting enthalpies (ΔHm), which indicates a decrease of crystallinity. TGA showed that thermal stability of PHBV/lignosulfonate samples was shifted to lower temperatures, which indicates the existence of an interaction between the thermal decomposition processes of PHBV and lignosulfonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号