首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study models and evaluates the kinetics of C-CO2 evolution during biodegradation of plastic materials including Polyethylene (PE), PE/starch blend (PE/starch), microcrystalline cellulose (MCE), and Polylactic acid (PLA). The aerobic biodegradation under controlled composting conditions was monitorated according to ISO 14855-1, 2004. The kinetics model was based on first order reaction in series with a flat lag phase. A non-linear regression technique was used to analyze the experimental data. SEM studies of the morphology of the samples before and after biodegradation testing were used to confirm the biodegradability of plastics and the accuracy of the model. The work showed that MCE and PLA produced the high amounts of C-CO2 evolution, which gave readily hydrolysable carbon values of 55.49% and 40.17%, respectively with readily hydrolysis rates of 0.338 day−1 and 0.025 day−1, respectively. Whereas, a lower amount of C-CO2 evolution was found in PE/starch, which had a high concentration of moderately hydrolysable carbon of 97.74% and a moderate hydrolysis rate of 0.00098 day−1. The mineralization rate of PLA was 0.500 day−1 as a lag phase was observed at the beginning of the biodegradability test. No lag phase was observed in the biodegradability testing of the PE/starch and MCE. The mineralization rates of the PE/starch and MCE were found to be 1.000 day−1, and 1.234 day−1, respectively. No C-CO2 evolution was observed during biodegradability testing of PE, which was used for reference as a non-biodegradable plastics sample.  相似文献   

2.
Biodegradable packaging has high potential to help solve the crisis of non-biodegradable plastic waste causing an increase in the footprint of landfills. However, more research needs to be executed to develop a larger assortment of biodegradable plastics for numerous applications and to make them more economical to manufacture. This paper discusses the design and validation of an automated composting system (AMUCS) that fits the requirements of the American Society for Testing and Materials (ASTM) 5338-11 standard. The results of the experiments show that the AMUCS was able to create and maintain the conditions for biodegradation of biodegradable polymers in compost using microcrystalline cellulose. The biodegradation caused by the composting environment was observed visually with the naked eye and on the micro scale with an environmental scanning electron microscope. The magnitude of biodegradation was measured by calculating the carbon metabolized from the samples. The carbon metabolized from the three compost replicates was consistent and linear, and there was only an 8 % difference between the non-biodegradable low density polyethylene and the compost. For the biodegradation study according to ASTM D 5338-11, the experiment was validated with the use of cellulose as a reference material. Under controlled composting conditions, the mineralization of microcrystalline cellulose yielded 72.05 %, which is slightly higher than the 70 % mineralization requirement.  相似文献   

3.
In this account, we report our findings on blends of cellulose acetate having a degree of substitution (DS) of 2.49 (CA2.5) with a cellulose acetate having a DS of 2.06 (CA2.0). This blend system was examined over the composition range of 0–100% CA2.0 employing both solvent casting of films (no plasticizer) and thermal processing (melt-compressed films and injection molding) using poly(ethylene glycol) as a common plasticizer. All thermally processed blends were optically clear and showed no loss in optical quality after storage for several months. Thermal analysis and measurement of physical properties indicate that blends in the middle composition range are partially miscible, while those at the ends of the composition range are miscible. We suggest that the miscibility of these cellulose acetate blends is influenced primarily by the monomer composition of the copolymers. Bench-scale simulated municipal composting confirmed the biodestructability of these blends and indicated that incorporation of a plasticizer accelerated the composting rates of the blends.In vitro aerobic biodegradation testing involving radiochemical labeling conclusively demonstrated that both the lower DS CA2.0 and the plasticizer significantly enhanced the biodegradation of the more highly substituted CA2.5.While this work was in progress, Robert Gardner was struck with cancer and died on June 6, 1995. This paper is dedicated to his memory and to his contributions as a friend and colleague.  相似文献   

4.
Biodegradability under composting conditions is assessed by test methods, such as ASTM D 5338-92, based on the measurement of CO2 released by test materials when mixed with mature compost and maintained in a controlled composting environment. However, in real composting, biodegradation occurs in fresh waste. To clarify this point, the biodegradation of paper and of a starch-based biodegradable thermoplastic material, Mater-Bi ZI01U, was followed by measuring the weight loss of samples introduced either into a mature compost or into a synthetic waste. The weight loss in mature compost was higher at the beginning but tended to decrease; in synthetic waste a first lag phase was followed by an exponential phase. Complete degradation of paper was noticed simultaneously in the two substrates (after 25 days). The bulkier Mater-Bi samples were fully degraded after 20 days in fresh waste, but after 45 days in mature compost. Therefore, the test methods using mature compost as a substrate can possibly underestimate the biodegradation rate occurring in fresh waste, i.e., in real composting plants, and have to be considered as conservative test methods. The test procedure described in this paper seems very suitable as a screening method to verify the compostability of plastic materials in a composting environment.  相似文献   

5.
The biodegradation behavior of insoluble crystalline polymers depends on both chemical structure and physical state. The physical state is strongly affected by the molding conditions; moreover the presence of natural hydrophylic substances such as starch can further influence the biodegradation process. This paper examines the biotic and abiotic degradation of thick injection-molded parts, made of pure poly--caprolactone (PCL) at different molecular weights, and of PCL in the presence of starch in the case of a commercial grade of Mater-Bi, produced by Novamont. The abiotic degradation was studied at 25 and 50°C, whereas the biotic degradation was followed in conditions of SCAS (semicontinuous activated sludges) at 25 and 50°C, soil burial, and controlled composting. The physical-chemical modifications provoked at the surface and in the bulk of the samples by the different types of degradation were determined by differential scanning calorimetry, viscometric and gravimetric analysis, scanning electron microscopy, and dynamic mechanical analysis. The mechanical modifications induced by the different environments were followed by tensile tests. It was demonstrated that the presence of starch significantly increases the apparent biodegradation rate of PCL, making even thick parts of ZI01U compatible with the composting process.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   

6.
Several starch/PVA/glycerol polymer blends were prepared by a solution casting technique and examined for biodegradation by composting over 45 days. Within this time frame, the starch and glycerol components were fully degraded, leaving the PVA component essentially intact. The lowest PVA content film (20%) was selected as a polymer with enough PVA to impart important physical characteristics, but also enough starch to be considered biodegradable. The film characteristics were further improved by surface modification with chitosan. This modification did not interfere with the biodegradation of the starch component. Furthermore, there was slight evidence that PVA biodegradation had been initiated in composted, surface modified starch/PVA blends.  相似文献   

7.
With the advent of recently promulgated Government regulations on plastics in Mauritius, a study was initiated to examine the biodegradability of two different types of plastic, namely Willow Ridge Plastics - PDQ-H additive (Plastic A) and Ecosafe Plastic - TDPA additive (Plastic B) under controlled and natural composting environments. The results obtained from the controlled composting environment showed that the cumulative carbon dioxide evolution for Plastic A was much higher than that for Plastic B. Plastic A therefore showed a higher level of biodegradation in terms of CO2 evolution than Plastic B. However, from the regression analysis, it was found that the level of CO2 varying with time fitted the sigmoid type curves with very high correlation coefficients (R2 values: 0.9928, 0.9921 and 0.9816, for reference material, inoculum and Plastic A, respectively). The corresponding F-values obtained from the ANOVA analysis together with significance levels of p<0.05 indicated that the three treatments analysed in the biodegradability experiment were significant. The other experiment was undertaken to observe any physical change of Plastics A and B as compared to a reference plastic, namely, compostable plastic bag (Mater-Bi product-Plastic C), when exposed to a natural composting environment. Thermophilic temperatures were obtained for about 3-5 days of composting and the moisture content was in the range of 60-80% throughout the degradation process. It was observed that after 55 days of composting, Plastic C degraded completely while Plastic A and Plastic B did not undergo any significant degradation. It can be concluded that naturally based plastic made of starch would degrade completely in a time frame of 60 days, whereas plastics with biodegradable additive would require a longer time.  相似文献   

8.
The worldwide accumulation of non-degradable plastic materials, such as plastic bags, is one of the most important environmental concerns nowadays. The use of degradable materials is an option to mitigate the environmental impact generated by the consumption of plastics. One of the technologies used for the manufacture and use of degradable plastics is the use of pro-degradant additives that are incorporated in conventional plastics to promote their degradation under certain conditions. The aim of this study is to evaluate the process of oxidation, biodegradation and potential ecotoxicity of polyethylene films containing an oxo-degradable additive, according to the standard ASTM D-6954. This method establishes a procedure in which the samples are subjected to consecutive steps of accelerated oxidation, biodegradation by composting and ecotoxicity assessment. Furthermore, the effect of the presence of printing ink in the polyethylene samples with oxo-degradable additive was evaluated, and the results were compared with those obtained for samples of conventional polyethylene and polylactic acid. After 180 days of laboratory controlled composting, the samples reached the following percentages of biodegradation: polylactic acid, 41 %; printed oxo-degradable polyethylene, 32.24 %; oxo-degradable polyethylene, 25.84 %; printed polyethylene, 18.23 % and polyethylene, 13.48 %. The cellulose sample used as a control was mineralized in 58.45 %. Ecotoxicity assessment showed that the products of biodegradation of the samples tested, did not generate a negative effect on germination or development of the vegetal species studied. Under proper waste management conditions, these plastics can be used as an option to decrease the environmental impact of plastic films.  相似文献   

9.
This study presents the effect of biodegradation, in a composting medium, on properties of membrane-like crosslinked and noncrosslinked polyvinyl alcohol (PVA) and nanocomposites. The composting was carried out for 120 days and the biodegradation of these materials was characterized using various techniques. The changes in the PVA resin and nanocomposite surface topography and microstructure during composting were also characterized. The results from the analyses suggest biodegradation of PVA based materials in compost medium was mainly by enzymes secreted by fungi. The results also indicate that the enzymes degraded the amorphous regions of the specimens first and that the PVA crystallinity played an important role in its biodegradation. The surface roughness of the specimens was seen to increase with composting time as the microbial colonies grew which in turn facilitated further microorganism growth. All specimens broke into small pieces between 90 and 120 days of composting as a result of deep biodegradation. Glyoxal and malonic acid crosslinking decreased the PVA biodegradation rate slightly. Addition of highly crystalline microfibrillated cellulose and naturally occurring halloysite nanotubes in PVA based nanocomposites also decreased the biodegradation rate. The three factors: PVA crystallinity, crosslinking and additives, may be utilized effectively to extend the life of these materials in real life applications.  相似文献   

10.
Modified polycaprolactone was synthesized by melt reaction of PCL and reactive monomers such as glycidyl methacrylate (GMA) and maleic anhydride (MAH) in the presence of benzoyl peroxide in Brabender mixer. MAH showed a different grafting phenomenon compared to GMA. The reaction mechanism was discussed with different reactive monomers. Reactive blends of the PCL-g-GMA and the gelatinized starch with glycerin were prepared and their mechanical properties and biodegradabilities were investigated. Reactive blends of PCL-g-GMA and starch showed well-dispersed starch domain in the matrix and better mechanical strength than the unmodified PCL/starch blend. However, the reaction between PCL-g-GMA and starch induced a crosslinking during the reactive blending and this crosslinking in the blend lowered the biodegradation of the blend during the composting test. The biodegradability was investigated by the weight loss and surface morphology change of the blend in the composting medium.  相似文献   

11.
The miscibility of cellulose acetate (CA; degree of substitution = 2.5) and poly(ethylene succinate) (PES) has been investigated using a variety of thermal techniques and by solid-state carbon13 NMR spectroscopy. The blends containing greater than ca. 70% CA were found to be miscible. In the case of blends containing less than ca. 70% CA, a combination of thermal and NMR analyses suggests that these blends are not fully miscible on a 2.5- to 5-nm scale. On the scale which can be probed by dynamic mechanical thermal analysis (15 nm), the low-percentage CA blends exhibit “significant local concentration fluctuations≓. Investigation of the biodegradation of the blend components and of the blends revealed that PES degraded relatively rapidly and that CA degraded slowly. The blends degraded at a rate essentially identical to that of CA. Miscibility (75% CA blend) or crystallization of PES (30% CA blend) had no significant effect. These data suggest that a significant mode of degradation ófPES during composting involves chemical hydrolysis of the polymer followed by biological assimilation of monomers. Degradation of the blends is initiated in the amorphous phase. Because CA is a significant component of the amorphous phase, a small amount of CA significantly impacts the biodegradation rates of the blends.  相似文献   

12.
Two series of starch-filled polyethylene films, consisting of high-density or low-density polyethylene and 0–20% starch, have been exposed for 60 days to a controlled composting environment. Evidence is reported that the oxidation of the polyethylene matrix is dependent upon the polyethylene type and content of starch.  相似文献   

13.
Polycaprolactone (PCL) powders were prepared from PCL pellets using a rotation mechanical mixer. PCL powders were separated by sieves with 60 and 120 meshes into four classes; 0–125 μm, 125–250 μm, 0–250 μm and 250–500 μm. Biodegradation tests of PCL powders and cellulose powders in an aqueous solution at 25°C were performed using the coulometer according to ISO 14851. Biodegradation tests of PCL powders and cellulose powders in controlled compost at 58°C were performed by the Mitsui Chemical Analysis and Consulting Service, Inc. according to ISO 14855-1 and by using the Microbial Oxidative Degradation Analyzer (MODA) instrument according to ISO/DIS 14855-2. PCL powders were faster biodegraded than cellulose powders. The reproducibility of biodegradation of PCL powders is excellent. Differences in the biodegradation of PCL powders with different class were not observed by the ISO 14851 and ISO/DIS 14855-2. An enzymatic degradation test of PCL powders with different class was studied using an enzyme of Amano Lipase PS. PCL with smaller particle size was faster degraded by the enzyme. PCL powders with regulated sizes from 125 μm to 250 μm are proposed as a reference material for the biodegradation test.  相似文献   

14.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   

15.
Polylactic acid (PLA) composites comprising up to 25 wt% cotton linter (CL) or up to 50 % maple wood fibre (WF) were prepared by compounding and injection moulding. A reduction of crystallinity in the PLA matrix was observed as a result of the thermal processing method. These PLACL and PLAWF composites provided excellent improvements in both stiffness (with increases in tensile and flexural modulus) and toughness (increases in notched impact strength) properties over the neat PLA resin, while the tensile and flexural strengths of the composites were generally unchanged, while the strain at break values were reduced in comparison to the neat PLA. DMA results indicated incorporating these fibres caused the mechanical loss factor (tan δ) to decrease, suggesting better damping capabilities were achieved with the composites. SEM analysis of the impact fractured surfaces of the PLACL composites showed debonding-cavitation at the matrix-fibre interface while the PLAWF composites showed good wetting along its matrix-fibre interface. The composting of these composites up to 90 days showed that the degradation onset time was increased when increasing the fibre loadings, but the maximum degree of degradation and the maximum daily rates of degradation were decreased compared to neat PLA. On a weight basis of fibre loading, the PLACL composites had a quicker onset of biodegradation, a higher maximum daily rate of biodegradation and, overall, a higher degree of biodegradation at 90 days than the PLAWF composites, possibly due to the quicker thermal hydrolysis observed in the PLA matrix of the PLACL composites during processing and composting.  相似文献   

16.
This work presents the last phase of long-term experimental studies on the biodegradation in soil behaviour of polymers destined for agricultural applications. The paper focuses on comparative studies between the biodegradation in soil behaviour of two important biodegradable polymers based on renewable resources: poly(lactic acid) (PLA) versus polyhydroxyalkanoates (PHA). Full-scale experiments were carried out during the period June 2008–January 2009. Different methods of exposure were applied in the case of polyhydroxyalkanoates, simulating the agricultural biodegradable mulching films use and their fate in soil after the end of their useful lifetime. The field results were compared with the results of biodegradation under controlled laboratory conditions simulating biodegradation in soil, using soil from the experimental field. Further, the field results were compared against the results of biodegradation under farm composting conditions.  相似文献   

17.
This study focuses on the investigation of the kinetics of municipal solid waste composting in three full-scale mechanical–biological treatment (MBT) plants. The aims were to test a kinetic model based on volatile solids (VS) content change for describing the composting process in MBT plants, and to identify the model parameters that affected the estimation of the reaction rate constant most. To achieve this, VS content and several environmental conditions, namely temperature, moisture content, oxygen concentration and total bulk density were monitored throughout the composting process. Experimental data was fitted with a first-order kinetic model, and a rate constant (k) characteristic of composting under optimum environmental conditions was obtained. The kinetic model satisfactorily described the experimental data for the three MBT plants. k values ranged from 0.043 ± 0.002 d?1 to 0.082 ± 0.011 d?1. Sensitivity analysis showed that the model parameters that most affected the estimation of k were the initial biodegradable volatile solids content, the maximum temperature for biodegradation and the optimum moisture content. In conclusion, we show for the first time that full-scale MBT plants can be successfully modelled with a composting kinetic model.  相似文献   

18.
The degradation of a film containing a 4,4diphenyl methane diisocyanate (MDI) poly(€-caprolactone)-based polyurethane was followed in a test system based on a mineral solid bed designed to facilitate analysis of break-down products released under composting conditions. The use of a mineral solid bed can help extraction and analytical procedures which could be hindered by the heterogeneous nature of compost. The fermentation conditions are typical of the composting environment and generate a powerfully degradative environment. The film fully disintegrated within 30 days of treatment. Analysis on the mineral bed extracts showed that: (i) about 40% of the initial polyurethane was still present in the bed extracts; (ii) this residue was strongly degraded in the poly(€-caprolactone) part, while the urethane part was almost completely recovered (from 80 to 95%, according to the measurement method); (iii) 4,4 diamino diphenyl methane (MDA), a very dangerous product of MDI, was released during biodegradation. The results indicate that a mineral bed can be employed to study degradation and metabolites formation in solid phase fermentation and that the MDI-based polyurethanes are not susceptible of a full degradation during composting and maintain the potential of a slow release of MDA into the environment after soil application.  相似文献   

19.
Soil retrieval, processing and storage procedures can have a profound effect on soil microorganisms. In particular, changes in soil microbial populations may adversely affect the biological activity of a soil and drastically alter the soil's potential to mineralize added substrates. The effects of cold storage on the biodegradation of a series of test polymers was investigated using two soils—a synthetic soil mix (SM-L8) and a field soil (Bridgehampton silt loam) from Rhode Island (RI-1). Biodegradation tests were conducted using freshly prepared/collected soil and again following storage at 4°C for 3 to 8 months. Prior to each biodegradation test, the soils were incubated at 60% water-holding capacity (WHC) and 25°C to rejuvenate the microbial populations; the soils were incubated for periods of 48 h (freshly collected soil) or 25 days (soils stored at 4°C). Soil microbial populations were assessed by enumerating different segments of the population on agar plates containing different selective media. Mineralization of the test polymers (cellulose, poly-3-hydroxybutyrate, and starch acetate, d.s. 1.5) was monitored using standard respirometric techniques. Our results demonstrated that cold storage had a generally negative effect on the soil microbial populations themselves but that its effect on the capacity of the soil microorganisms to degrade the test polymers varied between soils and polymer type. Whereas cold storage resulted in dramatic shifts in the community structure of the soil microbial populations, substantial restoration of these populations was possible by first conditioning the soils at 60% WHC and ambient temperatures for 25 days. Likewise, although the effects of cold storage on polymer mineralization varied with the test polymer and soil, these effects could be largely offset by including an initial 25-day stabilization period in the test.  相似文献   

20.
The biodegradation of polyethylene-chitin (PE-chitin) and polyethylene-chitosan (PE-chitosan) films, containing 10% by weight chitin or chitosan, by pure microbial cultures and in a soil environment was studied. Three soil-inhabited organsims,Serratia marcescens, Pseudomonas aeruginosa, andBeauveria bassiana were able to utilize chitin and chitosan in prepared PE-chitin and PE-chitosan films after eight weeks of incubation at 25°C in a basal medium containing no source of carbon or nitrogen. In a soil environment, the biodegradation of those films was studied and compared with a commercial biodegradable film containing 6% by the weight of corn starch. In soil placed in the lab, 73.4% of the chitosan and 84.7% of the chitin in the films were degraded, while 46.5% of the starch in the commercial film was degraded after six months of incubation. In an open field, 100% of the chitin and 100% of the chitosan in the films were degraded, but only 85% of the starch in the commercial film was degraded after six months of incubation. The weight of controls, (polyethylene films), remained mainly stable during the incubation period. Both PE-chitin and PE-chitosan films degraded at a higher rate than the commercial starch-based film in a soil environment indicating the potential use of chitin-based films for the manufacturing of biodegradable packaging materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号