首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Olivella MA 《Chemosphere》2006,63(1):116-131
Fourteen polycyclic aromatic hydrocarbons (PAHs) were measured in surface waters and precipitation inputs to Lake Maggiore, a subalpine lake in Northern Italy, from July 2003 to January 2004. Particulate and dissolved phases in surface water and rain samples were determined. Analyses of PAHs were performed using XAD-2 resin to isolate the dissolved PAHs and subsequent extraction by accelerated solvent extraction (ASE). Both the dissolved and particulate phase PAH patterns in surface water and rainwater samples were dominated by the low molecular weight compounds (e.g., phenanthrene, fluoranthene and pyrene). More than 85% of PAHs in surface waters and 72% of PAHs in rainwater were associated to the dissolved phase. The SigmaPAH concentrations in surface waters (particulate and dissolved phases) were 0.584 +/- 0.033 ng l(-1), 2.9 +/- 0.312 ng l(-1) and in rainwater (particulate and dissolved phases) 27.5 +/- 2 ng l(-1), 75.4 +/- 9 ng l(-1), respectively. Temporal variability of PAH concentrations in rain and surface water samples were observed, with higher concentrations in November and December, coinciding with the largest precipitation amounts. The comparison of PAH signatures in rainwater and surface waters seems to indicate that wet deposition (2.5-41 microg m(-2) month(-1)) is the main source of PAH contamination into surface waters of Lake Maggiore.  相似文献   

2.
The presence of polycyclic aromatic hydrocarbons (PAHs) in an urban region (Heraklion, Greece) and processes that govern their atmospheric fate were studied from November 2000 until February 2002. Sixteen samples were collected, by using an artifact-free sampling device, on a monthly basis and the concentration of PAHs in gas and particulate phase was determined. The most abundant members (gas + particles) were phenanthrene (20.0+/-7.0 ng m(-3)), fluoranthene (6.5+/-1.7 ng m(-3)), pyrene (6.6+/-2.4 ng m(-3)), and chrysene (3.1+/-1.5 ng m(-3)). Total concentration (gas+particulate) of PAH ranged from 44.3 to 129.2 ng m(-3), with a mean concentration of 79.3 ng m(-3). Total concentration of PAHs in gas phase ranged from 31.4 to 84.7 ng m(-3) with non-observable seasonal variation. Conversely, maximum PAH concentrations in the particulate phase occurred during winter months. Particulate concentration varied from 11.4 to 44.9 ng m(-3), with an average of 25.2 ng m(-3). PAH distribution between gas and particulate phase was in agreement with the sub-cooled vapor pressure. Shift in gas/particle distribution due to difference in ambient temperature elucidated to some extent the seasonal variation of the concentration of PAHs in particles.  相似文献   

3.
Fang GC  Chang KF  Lu C  Bai H 《Chemosphere》2004,55(6):787-796
The concentrations of polycyclic aromatic hydrocarbons (PAHs) in gas phase and particle bound were measured simultaneously at industrial (INDUSTRY), urban (URBAN), and rural areas (RURAL) in Taichung, Taiwan. And the PAH concentrations, size distributions, estimated PAHs dry deposition fluxes and health risk study of PAHs in the ambient air of central Taiwan were discussed in this study. Total PAH concentrations at INDUSTRY, URBAN, and RURAL sampling sites were found to be 1650 +/- 1240, 1220 +/- 520, and 831 +/- 427 ng/m3, respectively. The results indicated that PAH concentrations were higher at INDUSTRY and URBAN sampling sites than the RURAL sampling sites because of the more industrial processes, traffic exhausts and human activities. The estimation dry deposition and size distribution of PAHs were also studied. The results indicated that the estimated dry deposition fluxes of total PAHs were 58.5, 48.8, and 38.6 microg/m2/day at INDUSTRY, URBAN, and RURAL, respectively. The BaP equivalency results indicated that the health risk of gas phase PAHs were higher than the particle phase at three sampling sites of central Taiwan. However, compared with the BaP equivalency results to other studies conducted in factory, this study indicated the health risk of PAHs was acceptable in the ambient air of central Taiwan.  相似文献   

4.
Zhou J  Wang T  Huang Y  Mao T  Zhong N 《Chemosphere》2005,61(6):792-799
PAHs in five-stage size segregated aerosol particles were investigated in 2003 at urban and suburban sites of Beijing. The total concentration of 17 PAHs ranged between 0.84 and 152 ng m(-3), with an average of 116 ng m(-3), in urban area were 1.1-6.6 times higher than those measured in suburban area. It suggested a serious pollution level of PAHs in Beijing. PAHs concentrations increased with decreasing the ambient temperature. Approximately 68.4-84.7% of PAHs were adsorbed on particles having aerodynamic diameter 2.0 microm. Nearly bimodal distribution was found for PAHs with two and three rings, more than four rings PAHs, however, followed unimodal distribution. The overall mass median diameter (MMD) for PAHs decreased with increasing molecular weight. Diagnostic ratios and normalized distribution of PAHs indicated that the PAHs in aerosol particles were mainly derived from fossil fuel combustion. Coal combustion for domestic heating was probably major contributor to the higher PAHs loading in winter, whereas PAHs in other seasons displayed characteristic of mixed source of gasoline and diesel vehicle exhaust. Biomass burning and road dust are minor contributors to the PAHs composition of these aerosol particles. Except for source emission, other factors, such as meteorological condition, photochemical decay, and transportation from source to the receptor site, should to be involved in the generation of the observed patterns.  相似文献   

5.
Daily PM2.5 samples, Hg0 and speciated polycyclic aromatic hydrocarbon (PAH) were simultaneously collected at Potsdam and Stockton site in NY during the summers of 2000 and 2001. Samples for determination of the mass concentration and chemical composition of the PM2.5 were obtained with a speciation network PM2.5 sampler. Chemical composition including trace elemental composition, water-soluble ions, and elemental carbon were analyzed. Elemental mercury and PAHs were sampled separately. Daily PM2.5 concentrations ranged from 0.47 to 53.7 microg m(-3) at the Potsdam site, and from 0.82 to 47.23 microg m(-3) at the Stockton site with large daily differences between the two sites. Potsdam consistently had lower mass values than Stockton. The greatest contributors to the PM2.5 mass (generally >0.1 microg/m(3)) were sulfate, nitrate, ammonium, and BC at both sites. Seventeen PAHs were identified at each site in 2000 and the average total concentrations were 3.2 ng/m(3) and 2.9 ng/m(3) at the Potsdam and Stockton sites, respectively. The mean vapor phase mercury concentration at the Potsdam site (2.4 +/-1.2 ng m(-3), n=93) was higher than that at the Stockton site (1.2 +/- 1.0 ng m(-3), n=60) in 2000, whereas in 2001, the average concentrations were 1.1 ng m(-3) and 1.6 ng m(-3) at the Potsdam and Stockton sites, respectively. In general, vapor phase mercury concentrations increased with increasing ambient temperature at the Stockton site in 2000. These differences in values between 2000 and 2001 can be largely explained by distinct differences in the meteorological regimes that dominated in the different years.  相似文献   

6.
Ko FC  Baker J  Fang MD  Lee CL 《Chemosphere》2007,66(2):277-285
Polycyclic aromatic hydrocarbon (PAH) concentrations in 34 surface sediments along the Susquehanna River were investigated in 2000. The total concentrations of PAHs in the surface sediments of Lake Clarke, Lake Aldred, the upper Conowingo Reservoir, and the lower Conowingo Reservoir were 3.3+/-1.5 microg g-1 (n=9), 1.6+/-1.3 microg g-1 (n=4), 9.8+/-5.5 microg g-1 (n=7), and 4.0+/-1.2 microg g-1 (n=14), respectively. These represent the first comprehensive measurement of PAHs in Susquehanna River surface sediments. Overall, total PAH concentrations were relatively lower in Lake Aldred, which is more shallow and sloped, and significantly higher in the upper Conowingo Reservoir. The sediment PAH levels were related to river flow rates, which are indirectly correlated with the particle size of the surface sediments. Total PAH levels in all the studied sites were below the effects range median (ERM) of 44.8 microg g-1 with 38% (13 of the 34 sampling sites) exceeding the effects range low (ERL) of 4.02 microg g-1. Principal component analysis indicated that variations in the PAH compound patterns of each reservoir decreased from upstream to downstream, indicating that the surface sediments were mixed along the Susquehanna River. The PAH patterns in the lower Conowingo Reservoir sediments were a combination of those upstream sources. Source analysis using isomer ratios as indicators suggested that PAHs in the Susquehanna River surface sediment are derived from the combustion of fossil fuels such as coal and gasoline with coal as the major source of contaminants.  相似文献   

7.
Zhang S  Zhang Q  Darisaw S  Ehie O  Wang G 《Chemosphere》2007,66(6):1057-1069
An effective analytical method for simultaneously determining 16 polycyclic aromatic hydrocarbons (PAHs), 28 polychlorinated biphenyl (PCBs), and 12 pharmaceuticals and personal care products (PPCPs) has been developed to measure their concentrations in the Mississippi river waters in New Orleans, Louisiana, USA. The method involves the simultaneous extraction of the selected PAHs, PCBs, and PPCPs, from the aqueous phase by solid phase extraction using two-layer disks consisting of C(18) and SDB-XC, and collection of suspended solid in water samples by 0.2-0.6 microm filter in a single step. Target compounds adsorbed on the extraction disks were eluted with methanol, acetone, and dichloromethane. The suspended particles retained by the filter were sonically extracted using the same solvents. GC/MS was used for quantification of PAHs and PCBs directly and of PPCPs after derivatization. The analytical method was used in a 6-month field study of the Mississippi river water for contamination by PAHs, PCBs, and PPCPs and the following concentrations (ng/l) have been obtained: clofibric acid (3.2-26.7), ibuprofen (0-34.0), acetaminophen (24.7-65.2), caffeine (0-38.0), naproxen (0-135.2), triclosan (8.8-26.3), bisphenol A (0-147.2), carbamazepine (42.9-113.7), estrone (0-4.7), 17beta-estradiol (0-4.5), total PAHs (62.9-144.7), and total PCBs (22.2-163.4).  相似文献   

8.
Ambient air and deposition samples were collected in the period of July 2004-May 2005 in an industrial district of Bursa, Turkey and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds. The overall average of fourteen bulk deposition fluxes for PAHs was 3300+/-5100 ng m(-2) d(-1). PAH depositions showed a seasonal variation and they were higher in winter months. This was probably due to increases in residential heating activities and decreases in atmospheric mixing layer levels. Ambient air samples, measured with a high volume air sampler, were collected from the same site. The average total concentration including gas and particulate phase was about 300+/-420 ng m(-3) and it was in the range of previously reported values. Some of the ambient air and bulk deposition samples were collected simultaneously in dry periods. Both concurrently measured values were used to calculate the dry deposition velocities whose overall average value was 0.45+/-0.35 cm s(-1).  相似文献   

9.
Air samples were collected in an urban and industrialised area of Prato (Italy) during 2002, as part of a study to identify and measure aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). Total concentrations of aliphatic hydrocarbons ranged between 170 and 282ngm(-3) in the gas phase and from 48.9 to 276ngm(-3) in the particulate phase. The average total PAH concentrations (gas+particulate) were 59.4+/-26.5ngm(-3), and both gas and particulate phase PAH concentrations decreased with increasing temperature. Source identification using diagnostic ratios and principal component analysis identified automobile traffic, in particular, the strong influence of diesel fuel burning, as the major PAH source. Gas-particle partition coefficients (K(p)'s) of n-alkane and PAHs were well correlated with the sub-cooled liquid vapour pressure (P(L)(0)) and indicate stronger sorption of PAHs to aerosol particles compared with n-alkanes.  相似文献   

10.
Sharma H  Jain VK  Khan ZH 《Chemosphere》2007,66(2):302-310
This paper reports on polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particulate matter of Jawaharlal Nehru University campus, an urbanized site of New Delhi, India. Suspended particulate matter samples of 24h duration were collected on glass-fiber filter paper for four representative days in each month during January 2002 to December 2003. PAHs were extracted from filter papers using toluene with ultrasonication method and analysed. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the gas chromatography technique. The annual average concentration of total PAHs were found to be 668+/-399 and 672+/-388 ng/m3 in the years 2002 and 2003, respectively. The seasonal average concentrations were found to be maximum in winter and minimum during in the monsoon. The results of principal component analysis (PCA) indicate that diesel and gasoline driven vehicles are the principal sources of PAHs in all the seasons. In winter coal and wood combustion also significantly contribute to the PAH levels.  相似文献   

11.
Feng J  Chan CK  Fang M  Hu M  He L  Tang X 《Chemosphere》2005,61(5):623-632
Twenty-eight PM2.5 samples collected in Summer (July 2002) and Winter (November 2002) at two sites in Beijing, China were analyzed using GC/MS to investigate the impact of meteorology and coal burning on the solvent extractable organic compounds (SEOC). The characteristics and abundance of the n-alkanes, polycyclic aromatic hydrocarbons (PAHs), n-fatty acids and n-alkanols were determined. Source identification was made using organic species as molecular markers. Semi-volatile compounds of alkanes and PAHs had much higher concentrations in winter than summer because of the large difference in the temperature between the seasons. Plant wax emission was a major contributor to n-alkanes in summer, but fossil fuel residue was a major source (>80%) in winter. The seasonal differences in the distribution of pentacyclic triterpanes clearly shows the impact of coal burning for space heating in winter. The yield of PAHs in winter (148 ng m(-3) at the urban site and 277 ng m(-3) at the suburban site) was six to eight times higher than that in summer and was found to be mainly from coal burning. Higher pollutant concentrations were measured at the suburban site than the urban site in winter due to the rapid expansion of the city limit and the relocation of factories from urban to suburban areas over the last two decades.  相似文献   

12.
On-road mobile sources contribute substantially to ambient air concentrations of the carcinogens 1,3-butadiene, benzene, and polycyclic aromatic hydrocarbons (PAHs). The current study measured benzene and 1,3-butadiene at the Baltimore Harbor Tunnel tollbooth over 3-hr intervals on seven weekdays (n = 56). Particle-bound PAH was measured on a subset of three days. The 3-hr outdoor 1,3-butadiene levels varied according to time of day and traffic volume. The minimum occurred at night (12 a.m.-3 a.m.) with a mean of 2 microg/m3 (SD = 1.3, n = 7), while the maximum occurred during the morning rush hour (6 a.m.-9 a.m.) with a mean of 11.9 microg/m3 (SD = 4.6, n = 7). The corresponding traffic counts were 1413 (SD = 144) and 16,893 (SD = 692), respectively. During the same intervals, mean benzene concentration varied from 3 microg/m3 (SD = 3.1, n = 7) to 22.3 microg/m3 (SD = 7.6, n = 7). Median PAH concentrations ranged from 9 to 199 ng/m3. Using multivariate regression, a significant association (p < 0.001) between traffic and curbside concentration was observed. Much of the pollutant variability (1,3-butadiene 62%, benzene 77%, and PAH 85%) was explained by traffic volume, class, and meteorology. Results suggest > 2-axle vehicles emit 60, 32, and 9 times more PAH, 1,3-butadiene, and benzene, respectively, than do 2-axle vehicles. This study provides a model for estimating curbside pollution levels associated with traffic that may be relevant to exposures in the urban environment.  相似文献   

13.
Zohair A  Salim AB  Soyibo AA  Beck AJ 《Chemosphere》2006,63(4):541-553
The residues of polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in soils from organic farms and their uptake by four varieties of organic-produced potatoes and three varieties of organic carrots from England were investigated. Samples of the soils, crop peels and cores were all Soxhlet-extracted in triplicate, cleaned up by open-column chromatography and analysed by a multi-residue analytical method using gas chromatography with mass selective detection. The concentrations of PAHs, PCBs and OCPs in soils from organic farms ranged from 590+/-43 to 2301+/-146 microg/kg, 3.56+/-0.73 to 9.61+/-1.98 microg/kg and 52.2+/-4.9 to 478+/-111 microg/kg, respectively. Uptake by different crop varieties were 8.42+/-0.93 to 40.1+/-4.9 microg/kg sigmaPAHs, 0.83+/-0.19 to 2.68+/-0.94 microg/kg sigmaPCBs and 8.09+/-0.83 to 133+/-27 microg/kg sigmaOCPs. Residue uptake from soils depended on plant variety; Desiree potato and Nairobi carrot varieties were more susceptible to PAH contamination. Likewise, uptake of PCBs and OCPs depended on potato variety. There were significant positive correlations between the PCB and OCP concentrations (P<0.05) in soils and carrots but no significant correlation was found between the concentrations of any contaminants in soils and potatoes. Peeling carrots and potatoes was found to remove 52-100% of the contaminant residues depending on crop variety and the properties of the contaminants. Soil-crop bioconcentration factors (BCFs) decreased with increasing logK(ow) for PAHs up to about 4.5 and for PCBs up to about 6.5, above which no changes were discernible for either class of contaminants. No relationship was observed between soil-crop BCFs and logK(ow) for OCPs, most likely because their concentrations were low and variable.  相似文献   

14.
Particulate matter (PM) has become a major research issue receiving increasing attention because of its significant negative impact on human health. There are main indicators that next to the morphological characteristics of the particle, also the chemical composition plays an important role in the adverse health effects of PM. In this context, the rather polar organic fraction of PM is expected to play a major role, and advanced analytical techniques are developed to improve the knowledge on the molecular composition of this fraction. One component class that deserves major attention consists of the oxygenated polycyclic aromatic hydrocarbons (PAHs). Those compounds are considered to be among the key compounds in PM toxicity. This paper presents a comprehensive review focusing on the analysis, fate and behavior of oxygenated PAHs in the atmosphere. The first part of the paper briefly introduces (i) the main sources and atmospheric pathways of oxygenated PAHs, (ii) available physical–chemical properties and (iii) their health effects. The second and main part of this paper gives a thorough discussion on the entire analytical sequence necessary to identify and quantify oxygenated PAHs on atmospheric PM. Special attention is given to critical parameters and innovations related to (i) sampling, (ii) sample preparation including both extraction and clean-up, and (iii) separation and detection. Third, the state-of-the-art knowledge about the atmospheric occurrence of oxygenated PAHs is discussed, including an extended overview of reported concentrations presented as a function of sampling season and geographical location. A clear seasonal effect is observed with the median of the oxygenated PAHs concentrations during winter being a factor of 3–4 higher than during summer. However, the oxygenated PAH/parent PAH ratio is about 20 times higher during summer, indicating the importance of photochemical activity in the atmosphere.  相似文献   

15.
Leaf samples of six tree species were collected along urban roadsides and a campus site in Beijing for measurement of polycyclic aromatic hydrocarbons (PAHs). PAHs in leaves were attributed to two fractions, leaf cuticles and inner leaf tissues, using sequential extraction. Total concentrations of 16 PAHs in the cuticles and the inner tissues were 69.3+/-64.6 microg g(-1) (d.w.) and 1.07+/-0.2 microg g(-1) (d.w.) at roadside and 57.5+/-52.6 microg g(-1) and 0.716+/-0.2 microg g(-1) on campus, respectively. The lipid-normalized inner tissue PAHs varied from 5.8 microg g(-1) to 15.0 microg g(-1). Similarities in PAH spectra between leaf cuticles and airborne particles and between the inner tissues and gaseous phase imply that airborne particulates and gaseous PAHs are likely the sources of PAHs for cuticles and the inner tissues, respectively. Difficulty in migration of heavier PAHs into inner tissues could be another reason.  相似文献   

16.
XAD-2 resin-based passive samplers (PAS) with dimensions adapted to 100 mL accelerated solvent extraction cells were used to study the temporal and spatial variations of 17 PAHs on five sites in the atmosphere of southern Luxembourg. This new design allowed extracting the PAS without emptying the resin from the shelter. PAH analyses were done with gas chromatography–tandem mass spectrometry. PAS were deployed for 1 year with varying sampling periodicities, and 16 PAHs were detected with concentrations ranging from 1 ng/PAS for chrysene to 9,727 ng/PAS for naphthalene. The PAS were found adapted to the monitoring of temporal and spatial variations for lightweight PAHs (up to four aromatic rings) though not for heavy PAHs with five aromatic rings or more, as these compounds are preferably in the particle phase of the atmosphere and the amount of these PAHs trapped on the PAS will be too low.  相似文献   

17.
Water samples were collected from wastewater treatment plant (WWTP), drain water (DW), major tributaries (MT), and main course of the Yangtze River (MY) in areas of three industrial parks (IPs) in Chongqing city in the Three Gorges Reservoir (TGR). Sixteen EPA priority polycyclic aromatic hydrocarbon (PAH) pollutants were quantified to identify the effects of industrial activities on water quality of the TGR. The results showed that 11 individual PAHs were quantified and 5 PAHs (naphthalene (Nap), acenaphthylene (Acy), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BgP)) were under detection limits in all of the water samples. Three-ring and four-ring PAHs were the most detected PAHs. Concentrations of individual PAHs were in the range of not detected (nd) to 24.3 ng/L. Total PAH concentrations for each site ranged from nd to 42.9 ng/L and were lower compared to those in other studies. The mean PAH concentrations for sites WWTP, DW, MT, and MY showed as follows: DW (25.9 ng/L) > MY (15.5 ng/L) > MT (14.0 ng/L) > WWTP (9.3 ng/L), and DW contains the highest PAH concentrations. Source identification ratios showed that petroleum and combustion of biomass coal and petroleum were the main sources of PAHs. The results of potential ecosystem risk assessment indicated that, although PAH concentrations in MT and MY are likely harmless to ecosystem, contaminations of PAHs in DW were listed as middle levels and some management strategies and remediation actions, like strengthen clean production processes and banning illegal sewage discharging activities, etc., should be taken to lighten the ecosystem risk caused by PAHs especially risks caused by water discharging drains.  相似文献   

18.
Wu SP  Tao S  Liu WX 《Chemosphere》2006,62(3):357-367
The size distributions of 16 polycyclic aromatic hydrocarbons (PAHs) and particle mass less than 10 microm in aerodynamic diameter (Dp) were measured using a nine-stage low-volume cascade impactor at rural and urban sites in Tianjin, China in the winter of 2003-2004. The particles exhibited the trimodal distribution with the major peaks occurring at 0.43-2.1 and 9.0-10.0 microm for both urban and rural sites. The concentrations of the total PAH (sum of 16 PAH compound) at rural site were generally less than those of urban site. Mean fraction of 76.5% and 63.9% of the total PAH were associated with particles of 0.43-2.1 microm at rural and urban sites, respectively. Precipitation, temperature, wind speed and direction were the important meteorological factors influencing the concentration of PAHs in rural and urban sites. The distributions of PAHs concentration with respect to particle size were similar for rural and urban samples. The PAHs concentrations at the height of 40 m were higher than both of 20 and 60 m at urban site, but the mass median diameter (MMD) of total PAH increased with the increasing height. The mid-high molecular weight (278 >or= MW >or= 202) PAHs were mainly associated with fine particles (Dp or=MW >or=178) PAHs were distributed in both of fine and coarse particle. The fraction of PAHs associated with coarse particles (Dp>2.1 microm) decreased with increasing molecular weight. The relatively consistent distribution of PAHs seemed to indicate the similar combustion source of PAHs at both of rural and urban sites. The fine differences of concentration and distribution of PAHs at different levels at urban site suggested that the different source and transportation path of particulate PAHs.  相似文献   

19.
From 1995 to 2004, in Genoa, Italy, daily concentrations of twelve polycyclic aromatic hydrocarbons (PAHs) were measured in particulate phase (PM10), around a coke oven plant in operation from the 1950s and closed in 2002. The study permitted to identify the coke oven as the main PAH source in Genoa, causing constant exceeding of benzo(a)pyrene (BaP) air quality target (1.0 ng/m3) in the urban area till 1,900 meters distance downwind the plant. For this reason the plant was closed. Distance and daily hours downwind the coke plant were the main sources of variability of toxic BaP equivalent (BaPeq) concentrations and equations that best fitted these variables were experimentally obtained. During full plant activity, annual average BaPeq concentrations, measured in the three sampling sites aligned downwind to the summer prevalent winds, were: 85 ng/m3 at 40 m (site 2, industrial area), 13.2 ng/m3 at 300 m (site 3, residential area) and 5.6 ng/m3 at 575 m (site 4, residential area).

Soon after the coke oven's closure (February 2002) BaPeq concentrations (annual average) measured in residential area, decreased drastically: 0.2 ng/m3 at site 3, 0.4 ng/m3 at site 4. Comparing 1998 and 2003 data, BaPeq concentrations decreased 97.6% in site 3 and 92.8% in site 4.

Samples collected at site 3, during the longest downwind conditions, provided a reliable PAH profile of fugitive coke oven emissions. This profile was significantly different from the PAH profile, contemporary found at site 5, near the traffic flow.

This study demonstrates that risk assessment based only on distance of residences from a coke plant can be heavily inaccurate and confirmed that seasonal variability of BaPeq concentrations and high variability of fugitive emissions of PAHs during coke oven activities require at least one year of frequent and constant monitoring (10-15 samples each month).

Implications: Around a coking plant, polycyclic aromatic hydrocarbons (PAHs), concentrations depend mainly on downwind hours and distance. Equations that best fit these variables were experimentally calculated. Fugitive emissions of an old coke oven did not comply with the threshold BAP air concentration proposed by the World Health Organization (WHO), up to 1,900 m distance. The study identified the PAH profile of fugitive emissions of a coke oven, statistically different from the profile of traffic emissions. During its activity, in the Genoa residential area, 575 m away from the plant, 92.8% of found PAHs was due to coke oven emission only.  相似文献   

20.
The origin of polycyclic aromatic hydrocarbons (PAH) contamination in bulk atmospheric deposition at two sites of the Seine estuary, one urban and one industrial, has been investigated. The PAH profiles indicate that PAHs mainly have a pyrolytic origin, both in urban and industrial areas. PAH sources vary during the year with an increase of high molecular weight PAH proportions (especially for carcinogenic PAHs) in winter, that means an increase of combustion processes such as domestic heating. Ratios of indicator PAHs (FTH/FTH+PYR and IcdP/IcdP+BghiP) confirm the pyrolytic origin of PAHs. In summer, ratios show the presence of industrial sources. In addition to these two methods, a factor analysis/multiple linear regression model was applied and gave an approximation of PAH source apportionment. PAH were found to be associated predominantly with emissions from road traffic (gasoline and diesel), that accounts for 17-34%. Domestic heating is a very important PAH source in urban areas and accounts for up to 85% of PAHs in winter. Industrial emissions (refineries...) account for 25% in the industrial area in summer. Each is an identified source category for the region and these results are consistent with fly-ashes identified by scanning electron microscopy. This study demonstrates that a combination of source identification methods is a far more efficient than one method alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号