首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples (n = 58) collected every sixth day in Xi’an, China, from 5 July 2008 to 27 June 2009 are analyzed for levoglucosan (1,6-anhydro-β-d-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m?3, with an average of 428 ± 399 ng m?3. Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 < R < 0.91) were found between levoglucosan relative to water-soluble K+, Cl?, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of 2.3% was found in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1–43.8% of OC (with an average of 17.6 ± 8.4%).

Implications:?PM2.5 levoglucosan concentrations and the correlation between levoglucosan relative to other compounds during four seasons in Xi’an showed that the influence of biomass burning is maximum during the residential heating season (winter), although some important influences may be detected in spring (field preparation burnings) and autumn (corn stalks and wheat straw burning, fallen dead leaves burning) at Xi’an and surrounding areas. Household heating with biomass during winter was quite widespread in Guanzhong Plain. Therefore, the control of biomass/biofuel combustion could be an effective method to reduce pollutant emission on a regional scale.  相似文献   

2.
Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM10 concentrations above 150 μg m?3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM10 observations during September–November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM10, and 40% of PM10 for days with 24-h average concentrations above 150 μg m?3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.  相似文献   

3.
Twenty-eight polycyclic aromatic hydrocarbons (PAH) and methylated PAHs (Me-PAH) were measured in daily PM2.5 samples collected at an urban site, a suburban site, and a rural site in and near Atlanta during 2004 (5 samples/month/site). The suburban site, located near a major highway, had higher PM2.5-bound PAH concentrations than did the urban site, and the rural site had the lowest PAH levels. Monthly variations are described for concentrations of total PAHs (∑PAHs) and individual PAHs. PAH concentrations were much higher in cold months than in warm months, with average monthly ∑PAH concentrations at the urban and suburban-highway monitoring sites ranging from 2.12 to 6.85 ng m?3 during January–February and November–December 2004, compared to 0.38–0.98 ng m?3 during May–September 2004. ∑PAH concentrations were found to be well correlated with PM2.5 and organic carbon (OC) within seasons, and the fractions of PAHs in PM2.5 and OC were higher in winter than in summer. Methyl phenanthrenes were present at higher levels than their un-substituted homologue (phenanthrene), suggesting a petrogenic (unburned petroleum products) input. Retene, a proposed tracer for biomass burning, peaked in March, the month with the highest acreage and frequency of prescribed burning and unplanned fires, and in December, during the high residential wood-burning season, indicating that retene might be a good marker for burning of all biomass materials. In contrast, potassium peaked only in December, indicating that it might be a more specific tracer for wood-burning.  相似文献   

4.
The long-range transported smokes emitted by biomass burning had a strong impact on the PM2.5 mass concentrations in Helsinki over the 12 days period in April and May 2006. To characterize aerosols during this period, the real-time measurements were done for PM2.5, PM2.5–10, common ions and black carbon. Moreover, the 24-h PM1 filter samples were analysed for organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), ions and levoglucosan. The Finnish emergency and air quality modelling system SILAM was used for the forecast of the PM2.5 concentration generated by biomass burning. According to the real-time PM2.5 data, the investigated period was divided into four types of PM situations: episode 1 (EPI-1; 25–29 April), episode 2 (EPI-2; 1–5 May), episode 3 (EPI-3; 5–6 May) and a reference period (REF; 24 March–24 April). EPI-3 included a local warehouse fire and therefore it is discussed separately. The PM1 mass concentrations of biomass burning tracers—levoglucosan, potassium and oxalate—increased during the two long-range transport episodes (EPI-1 and EPI-2). The most substantial difference between the episodes was exhibited by the sulphate concentration, which was 4.9 (±1.4) μg m−3 in EPI-2 but only 2.4 (±0.31) μg m−3 in EPI-1 being close to that of REF (1.8±0.54 μg m−3). The concentration of particulate organic matter in PM1 was clearly higher during EPI-1 (11±3.3 μg m−3) and EPI-2 (9.7±4.0 μg m−3) than REF (1.3±0.45 μg m−3). The long-range transported smoke had only a minor impact on the WSOC-to-OC ratio. According to the model simulations, MODIS detected the fires that caused the first set of concentration peaks (EPI-1) and the local warehouse fire (EPI-3), but missed the second one (EPI-2) probably due to dense frontal clouds.  相似文献   

5.
To better understand the contribution of biogenic volatile organic compounds to the formation of secondary organic aerosol (SOA) in high mountain regions, ambient aerosols were collected at the summit of Mt. Tai (1534 m, a.s.l.), Central East China (CEC) during the Mount Tai Experiment 2006 campaign (MTX2006) in early summer. Biogenic SOA tracers for the oxidation of isoprene, α/β-pinene, and β-caryophyllene were measured using gas chromatography/mass spectrometry. Most of the biogenic SOA tracers did not show clear diurnal variations, suggesting that they are formed during long-range atmospheric transport or over relatively long time scales. Although isoprene- and α/β-pinene-derived SOA tracers did not correlate with levoglucosan (a biomass burning tracer), β-caryophyllinic acid showed a good correlation with levoglucosan, indicating that crop residue burning may be a source for this acid. Total concentrations of isoprene oxidation products are much higher than those of α/β-pinene and β-caryophyllene oxidation products. The averaged ratio of isoprene to α/β-pinene oxidation products (Riso/pine) was 4.9 and 6.7 for the daytime and nighttime samples, respectively. These values are among the highest in the aerosols reported in different geographical regions, which may be due to the large isoprene fluxes and relatively high levels of oxidants such as OH in CEC. Using a tracer-based method, we estimated the concentrations of secondary organic carbon (SOC) derived from isoprene, α/β-pinene, and β-caryophyllene to be 0.42–3.1 μgC m?3 (average 1.6 μgC m?3) during the daytime and 0.11–4.2 μgC m?3 (1.7 μgC m?3) during the nighttime. These values correspond to 2.9–23% (10%) and 3.2–28% (9.8%) of the total OC concentrations, in which isoprene-derived SOC accounts for 58% and 63% of total SOC during the daytime and nighttime, respectively. This study suggests that isoprene is a more significant precursor for biogenic SOA than α/β-pinene and β-caryophyllene at high altitudes in CEC.  相似文献   

6.
Ambient daily PM10 aerosol samples were collected at two sites in Tanzania in May and June 2005 (during the wet season), and their chemical characteristics were studied. The sites were a rural site in Morogoro and an urban kerbside site in Dar es Salaam. A Gent PM10 stacked filter unit sampler with sequential Nuclepore polycarbonate filters, providing fine and coarse size fractions, and a PM10 sampler with quartz fibre filters were deployed. Parallel collections of 24 h were made with the two samplers and the number of these collections was 13 in Morogoro and 16 in Dar es Salaam. The average mass concentration of PM10 was 27 ± 11 μg/m3 in Morogoro and 51 ± 21 μg/m3 in Dar es Salaam. In Morogoro, the mean concentrations of organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were 6.8, 0.51, and 2.8 μg/m3, respectively. In contrast, higher mean concentrations (11.9, 4.6, and 3.3 μg/m3, respectively) were obtained for Dar es Salaam. At both sites, species and elements, such as black carbon, NH4+, non-sea-salt SO42?, K, and Ni (and at Dar es Salaam also V, As, Br, and Pb) were mainly present in the fine size fraction. The common crustal and sea-salt elements, including Na, Mg, Al, Si, Cl, Ca, Ti, Mn, Fe, and Sr, and also NO3? and P (and to a lesser extent Cu and Zn) were concentrated in the coarse particles. Aerosol chemical mass closure indicated that the PM10 mass in Morogoro consisted, on average, of 48% organic matter (OM), 44% crustal matter, 4% sea salt, and 2% EC, while in Dar es Salaam OM, crustal matter, sea salt, and EC represented 37%, 32%, 9%, and 9% of the PM10 mass. The contributions of the secondary inorganic aerosol (non-sea-salt sulphate, nitrate, and ammonium) were small, i.e., only 5% in total at each site. Carbonaceous materials and crustal matter were thus the most important components of the PM10 mass. It is suggested that biomass burning is a major contributor to the OM; at Dar es Salaam there is also a very substantial contribution from traffic. A source apportionment calculation indicated that 68% of the OC at this site originated from traffic exhaust versus 32% from charcoal burning. The crustal matter at Morogoro is likely mainly attributable to soil dust resuspension, whereas in Dar es Salaam it is likely mostly resuspended road dust.  相似文献   

7.
Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM2.5 and PM10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM2.5 was 194 ± 94 μg m?3 and PM10 was 336 ± 135 μg m?3. Coarse aerosol (PM10?2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.  相似文献   

8.
Anhydrosugars (levoglucosan, mannosan and galactosan) were investigated during one year in three Austrian regions at three types of sites (city-heavy traffic-impacted, city-residential and background) in order to assess the magnitude of the contribution of wood smoke to the particulate matter load and its organic fraction. The annually averaged concentrations of levoglucosan ranged from 0.12 to 0.48 μg m?3. The levoglucosan concentration exhibited a strong annual cycle with higher concentrations in the cold season. The minor anhydrosugars had a similar annual trend, but their concentrations were lower by a factor of about 5 and about 25 in the cold season for mannosan and galactosan, respectively. Levoglucosan concentrations were higher at the inner-urban as compared to rural sites. The contribution of wood smoke to organic carbon and PM10 levels was calculated using a constant ratio of levoglucosan and OC, respectively PM10 as derived for fire wood typical for Alpine European regions [Schmidl, C., Marr, I.L., Caseiro, A.e, Kotianová, P., Berner, A., Bauer, H., Kasper-Giebl, A., Puxbaum, H., 2008a. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environment 42, 126–141]. The estimated contribution of wood smoke-OC to the OC of PM10 ranged from one third to more than half in the cold season with higher contributions up to 70% in winter (December, January and February) in the smaller cities and the rural background. This indicates, that wood smoke is the predominant source of organic material at rural and small urban sites in central Europe. Consistently, wood smoke was an important contributor to PM10 during the cold season, with contributions of around 10% in the Vienna larger region and around 20% at rural sites in the densely forested regions of Salzburg and Styria during the winter months. In those regions residential sites exhibited highest relative wood smoke contents in PM10 during autumn (September till November), indicating the use of wood stoves for auxiliary heating in the transition of warm to cold season. Using the relationships between the different anhydrosugars the combustion of softwood was found to be dominant for the wood smoke occurrence in ambient air at the investigated sites. Potassium, a commonly used tracer for biomass burning, correlated well to levoglucosan, with a mass ratio of around 0.80 in the cold season.  相似文献   

9.
High-volume PM2.5 samples were collected at Summit, Greenland for approximately six months from late May through December of 2006. Filters were composited and analyzed for source tracer compounds. The individual organic compounds measured at Summit are orders of magnitude smaller than concentrations measured at other sites, including locations representative of remote oceanic, and remote and urban continental aerosol. The measured tracers were used to quantify the contribution of biomass burning (0.6–0.9 ng C m?3), vegetative detritus (0.3–0.9 ng C m?3), and fossil fuel combustion (0.1–0.8 ng C m?3) sources, 4% of OC total, to atmospheric organic carbon concentrations at the remote location of Summit, Greenland. The unapportioned organic carbon (96%) during the early summer period correlates well with the fraction of water soluble organic carbon, indicating secondary organic aerosol as a large source of organic carbon, supported by the active photochemistry occurring at Summit. To the author's knowledge, this paper represents the first source apportionment results for the polar free troposphere.  相似文献   

10.
We report on ambient atmospheric aerosols present at sea during the Atlantic–Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM10, PM2.5, and PM1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM10 levels <10 μg m?3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM10 daily mean levels averaged 40–60 μg m?3 (30–40 μg m?3 PM2.5; c. 20 μg m?3 PM1), peaking briefly to >120 μg m?3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM1/PM10 ratios ranged from very low during desert dust intrusions (0.3–0.4) to very high during anthropogenic pollution plume events (0.8–1).  相似文献   

11.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

12.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

13.
Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2?±?33.6 μg m?3) were significantly higher than those at the rural sites (23.7?±?20.4 and 22.7?±?26.9 μg m?3). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the rural site located to the south of the power plants, although it was less important (7.2 %). Moderate contributions of fly ash were found at the urban site (5.4 and 2.7 % in the cold and the warm period, respectively). Finally, the mine field was identified as a minor PM10 source, occasionally contributing with lignite dust and/or deposited wet ash dust under dry summer conditions, with the summertime contributions ranging between 3.1 and 11.0 % among the three sites. The non-parametric bootstrapped potential source contribution function analysis was further applied to localize the regions of sources apportioned by the RCMB. For the majority of sources, source regions appeared as being located within short distances from the sampling sites (within the Peloponnesse Peninsula). More distant Greek areas of the NNE sector also appeared to be source regions for traffic emissions and secondary calcium sulfate dust.  相似文献   

14.
Personal exposure to particulate matter of aerodynamic diameter under 2.5 μm (PM2.5) was monitored using a DustTrak nephelometer. The battery-operated unit, worn by an adult individual for a period of approximately one year, logged integrated average PM2.5 concentrations over 5 min intervals. A detailed time-activity diary was used to record the experimental subject’s movement and the microenvironments visited. Altogether 239 days covering all the months (except April) were available for the analysis. In total, 60 463 acceptable 5-min averages were obtained. The dataset was divided into 7 indoor and 4 outdoor microenvironments. Of the total time, 84% was spent indoors, 10.9% outdoors and 5.1% in transport. The indoor 5-min PM2.5 average was higher (55.7 μg m?3) than the outdoor value (49.8 μg m?3). The highest 5-min PM2.5 average concentration was detected in restaurant microenvironments (1103 μg m?3), the second highest 5-min average concentration was recorded in indoor spaces heated by stoves burning solid fuels (420 μg m?3). The lowest 5-min mean aerosol concentrations were detected outdoors in rural/natural environments (25 μg m?3) and indoors at the monitored person’s home (36 μg m?3). Outdoor and indoor concentrations of PM2.5 measured by the nephelometer at home and during movement in the vicinity of the experimental subject’s home were compared with those of the nearest fixed-site monitor of the national air quality monitoring network. The high correlation coefficient (0.78) between the personal and fixed-site monitor aerosol concentrations suggested that fixed-site monitor data can be used as proxies for personal exposure in residential and some other microenvironments. Collocated measurements with a reference method (β-attenuation) showed a non-linear systematic bias of the light-scattering method, limiting the use of direct concentration readings for exact exposure analysis.  相似文献   

15.
PM2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004–2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM2.5 in urban Guangzhou (32–35%) than that in urban Hong Kong (43–57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation (R2=0.76–0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8–5.9 and 10.2–12.8 μg m−3, respectively, accounting for 21–32% and 36–42% of OC in summer and winter in Guangzhou. The average values of 4.2–6.8% for SOA/ PM2.5 indicate that SOA was minor component in PM2.5 in Guangzhou.  相似文献   

16.
Water extracts of atmospheric particulate matter (PM2.5) collected at the Storm Peak Laboratory (SPL) (3210 MSL, 40.45° N, 106.74° W) were analyzed for a wide variety of polar organic compounds. The unique geographical character of SPL allows for extended observations/sampling of the free tropospheric interface. Under variable meteorological conditions between January 9th and January14th 2007, the most abundant compounds were levoglucosan (9–72 ng m?3), palmitic acid (10–40 ng m?3) and succinic acid (18–27 ng m?3). Of 84 analytes included in the GC–MS method, over 50 individual water extractable polar organic compounds (POC) were present at concentrations greater than 0.1 ng m?3. During a snow event (Jan. 11th–13th), the concentrations of several presumed atmospheric transformation compounds (dicarboxylic acids) were reduced. Lower actinic flux, reduced transport distance, and ice crystal scavenging may explain this variability. Diurnal averages over the sampling period revealed a higher total concentration of water extractable POC at night, 211 ng m?3 (105–265 ng m?3), versus day, 160 ng m?3 (137–205 ng m?3), which suggests a more aged nighttime aerosol character. This may be due to the increased daytime convective mixing of local primary emissions from the Yampa Valley. XAD resin extracts revealed a gas-phase partitioning of several compounds, and analysis of cloud water collected at this site in 2002 revealed a similar compound abundance trend. Levoglucosan, a wood smoke tracer was generally found to be the most abundant compound in both aerosol and cloud water samples. Variations in meteorological parameters and local/regional transport analysis play an important interpretive role in understanding these results.  相似文献   

17.
Size-segregated aerosol samples (PM2.5 and PM10) were collected during Jan–Dec-2007 from a high-altitude site located in a semi-arid region (Mt. Abu, 24.6 °N, 72.7 °E, 1680 m asl) in order to asses the temporal variability in the abundance of atmospheric mineral dust and its elemental composition over western India. The mass concentrations of fine (PM2.5) and coarse (PM10–2.5) mode aerosols varied from 1.6 to 46.1 and 2.3 to 102 μg m?3 respectively over the annual seasonal cycle; with dominant and uniform contribution of mineral dust (60–80%) in the coarse mode relative to large temporal variability (11–75%) observed in the fine mode. The coarse mass fraction shows a characteristic increase with the wind speed during summer months (Mar to Jun); whereas fine aerosol mass and its elemental composition exhibit conspicuous temporal pattern associated with north-easterlies during wintertime (Oct–Feb). The Fe/Al weight ratio in PM2.5 ranges from 0.5 to 1.0 during winter months. The relative enrichment of Fe in fine mode, compared to the crustal ratio of 0.44, is attributed to the down-wind advective transport of combustion products derived from large-scale biomass burning, industrial and automobile emission sources located in the Indo-Gangetic Plain (northern India). In contrast, Ca/Al and Mg/Al weight ratios show relative enrichment of Ca and Mg in the coarse mode; indicating their dominant contribution from carbonate minerals. This has implication to efficient neutralization of atmospheric acidic species (SO42? and NO3?) by mineral dust over western India.  相似文献   

18.
PM10 measurements were started in November 1992 at Melpitz site. The mean PM10 concentration in 1993 was 38 μg m?3 in the summer season (May until October) and about 44 μg m?3 in the winter season (November until April). The mean PM10 level decreased until 1999 and varies now in ranges from 20–34 μg m?3 to 17–24 μg m?3 (minimum and maximum mean values for 1999–2008) in winter and summer seasons, respectively. High volume filter samples of particles PM10, PM2.5 and PM1 were characterized for mass, water-soluble ions, organic and elemental carbon from 2004 until 2008. The percentage of PM2.5 in PM10 varies between summer (71.6%) and winter seasons (81.9%). Mean concentrations of PM10, PM2.5 and PM1 in Melpitz were 20, 15, and 13 μg m?3 in 2004, 22, 18, and 13 μg m?3 in 2005, 24, 19, and 12 μg m?3 in 2006 and 22, 17, and 12 μg m?3 in 2007, respectively. In the four winters the rural background concentration PM10 at Melpitz exceeded the daily 50 μg m?3 limit for Europe on 8, 8, 7 and 6 days, respectively.Findings for a simple two-sector-classification of the samples (May 2004 until April 2008) using 96-h backward trajectories for the identification of source regions are: Air masses were transported most of time (60%) from the western sector and secondly (17%) from the eastern sector. The lowest daily mean mass concentration PM10 were found during western inflow in summer (17 μg m?3) containing low amounts of sulphate (2.4 μg m?3), nitrate (1.7 μg m?3), ammonium (1.1 μg m?3) and TC (3.7 μg m?3). In opposite the highest mean mass concentration PM10 was found during eastern inflow in winter (35 μg m?3) with high amounts of sulphate (6.1 μg m?3), nitrate (5.4 μg m?3), ammonium (3.8 μg m?3) and TC (9.4 μg m?3). An estimation of secondary formed OC (SOA) shows 0.8–0.9 μg m?3 for air masses from West and 2.1–2.2 μg m?3 from East. The seasonal difference can be neglected.The half-hourly measurements of the particle mass concentration PM10 evaluated as mean daily courses using a TEOM® show low values (14–21 μg m?3) in summer and winter for air masses transported from West and the highest concentrations (31–38 μg m?3) in winter for air masses from East.The results demonstrate the influence of meteorological parameters on long-range transport, secondary particle mass formation and re-emission which modify mass concentration and composition of PM10, PM2.5 and PM1. Melpitz site is located in the East of Germany faraway from strong local anthropogenic emissions (rural background). Therefore, this site is suitable for investigation of the influence of long-range transport of air pollution in continental air masses from the East with source regions inside and outside of the European Union.  相似文献   

19.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   

20.
This study identifies major contributing sources of high particulate matter (PM) days in Hong Kong and conducive meteorological conditions leading to high PM. The PM10 chemical composition of 3393 ambient samples collected at ten monitoring stations in Hong Kong during 1998–2005 were used as input for positive matrix factorization (PMF) modeling to identify and quantify the aerosol sources in Hong Kong. Days with PM10 levels exceeding 56 μg m?3, the average plus one standard deviation of the mass concentration of all samples, are defined as high PM days. A total of 401 samples fell in the high PM category during the study period. Biomass burning, secondary sulfate and secondary nitrate were found to be the major contributors leading to high PM, responsible for 68–73% of PM10 mass on high PM days. The contributions by these sources on high PM days were 140–180% higher than their respective average concentration contributions. These sources were identified to be regional sources on the grounds of little spatial variation in their concentrations among the monitoring stations and a temporal pattern of higher in the winter and lower in the summer. Sampling days of high PM in 2004 and 2005 were individually examined for weather charts and regional surface wind maps. Weak high pressures over mainland China were the most important synoptic event leading to high PM days in the fall and winter, while typhoon episodes were responsible for most summer cases. Approximately 80% of the high PM days were in the fall and winter months (September–February). Almost all the high PM days were associated with northwesterly, northerly or northeasterly regional transport. Anthropogenic primary sources (coal combustion, vehicular exhaust, and residue oil combustion) showed the highest contributions associated with northwesterly wind, indicating the strong influence of the more urbanized areas to the northwest of Hong Kong in the Pearl River Delta region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号