首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigates the oxidative aging process of SOA derived from select aromatic (m-xylene) and biogenic (α-pinene) precursors within an environmental chamber. Simultaneous measurements of SOA hygroscopicity, volatility, particle density, and elemental chemical composition (C:O:H) reveal only slight particle aging for up to the first 16 h of formation. The chemical aging observed is consistent with SOA that is decreasing in volatility and increasing in O/C and hydrophilicity. Even after aging, the O/C (0.25 and 0.40 for α-pinene and m-xylene oxidation, respectively) was below the OOAI and OOAII ambient fractions measured by high-resolution aerosol mass spectra coupled with Positive Matrix Factorization (PMF). The rate of increase in O/C does not appear to be sufficient to achieve OOAI or OOAII levels of oxygenation within regular chamber experiment duration. No chemical aging was observed for SOA during dark α-pinene ozonolysis with a hydroxyl radical scavenger present. This finding is consistent with observations by other groups that SOA from this system is comprised of first generation products.  相似文献   

2.
An organic tracer-based method containing laboratory and field study components was used to estimate the secondary organic aerosol (SOA) contributions of biogenic and anthropogenic hydrocarbons to ambient organic carbon (OC) concentrations in PM2.5 during 2003 in Research Triangle Park, NC. In the laboratory, smog chamber experiments were conducted where isoprene, α-pinene, β-caryophyllene, and toluene were individually irradiated in the presence of NOX. In each experiment, SOA was collected and analyzed for potential tracer compounds, whose concentrations were used to calculate a mass fraction of tracer compounds for each hydrocarbon. In the field, 33 PM2.5 samples were collected and analyzed for (1) tracer compounds observed in the laboratory irradiations, (2) levoglucosan, a biomass burning tracer, and (3) total OC. For each of the four hydrocarbons, the SOA contributions to ambient OC concentrations were estimated using the tracer concentrations and the laboratory-derived mass fractions. The estimates show SOA formation from isoprene, α-pinene, β-caryophyllene, and toluene contributed significantly to the ambient OC concentrations. The relative contributions were highly seasonal with biomass burning in the winter accounting for more than 50% of the OC concentrations, while SOA contributions remained low. However, during the 6-month period between May and October, SOA from the precursor hydrocarbons contributed more than 40% of the measured OC concentration. Although the tracer-based method is subject to considerable uncertainty due to the simplification of replacing the complex set of chemical reactions responsible for SOA with a laboratory-derived single-valued mass fraction, the results suggest this approach can be used to identify major sources of SOA which can assist in the development of air quality models.  相似文献   

3.
The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC–MS methods. In addition to the known isoprene photooxidation products 2-methylglyceric acid, 2-methylthreitol, and 2-methylerythritol, three other peaks of note were detected: one of these was consistent with a silylated-derivative of sulfuric acid, while the remaining two were other oxidized organic compounds detected only when acidic aerosol was present. These two oxidation products were also detected in field samples, and their presence was found to be dependent on both the apparent degree of aerosol acidity as well as the availability of isoprene aerosol. The average concentrations of the sum of these two compounds in the ambient PM2.5 samples ranged from below the GC–MS detection limit during periods when the isoprene emission rate or apparent acidity were low to approximately 200 ng m?3 (calibrations being based on a surrogate compound) during periods of high isoprene emissions. These compounds presently unidentified have the potential to serve as organic tracers of isoprene SOA formed exclusively in the presence of acidic aerosol and may also be useful in assessments in determining the importance and impact of aerosol acidity on ambient SOA formation.  相似文献   

4.
The UCD/CIT air quality model was modified to predict source contributions to secondary organic aerosol (SOA) by expanding the Caltech Atmospheric Chemistry Mechanism to separately track source apportionment information through the chemical reaction system as precursor species react to form condensable products. The model was used to predict source contributions to SOA in Los Angeles from catalyst-equipped gasoline vehicles, non-catalyst equipped gasoline vehicles, diesel vehicles, combustion of high sulfur fuel, other anthropogenic sources, biogenic sources, and initial/boundary conditions during the severe photochemical smog episode that occurred on 9 September 1993. Gasoline engines (catalyst+non-catalyst equipped) were found to be the single-largest anthropogenic source of SOA averaged over the entire model domain. The region-wide 24-h average concentration of SOA produced by gasoline engines was predicted to be 0.34 μg m−3 with a maximum 24-h average concentration of 1.81 μg m−3 downwind of central Los Angeles. The region-wide 24-h average concentration of SOA produced by diesel engines was predicted to be 0.02 μg m−3, with a maximum 24-h average concentration of 0.12 μg m−3 downwind of central Los Angeles. Biogenic sources are predicted to produce a region-wide 24-h average SOA value of 0.16 μg m−3, with a maximum 24-h average concentration of 1.37 μg m−3 in the less-heavily populated regions at the northern and southern edges of the air basin (close to the biogenic emissions sources). SOA concentrations associated with anthropogenic sources were weakly diurnal, with slightly lower concentrations during the day as mixing depth increased. SOA concentrations associated with biogenic sources were strongly diurnal, with higher concentrations of aqueous biogenic SOA at night when relative humidity (RH) peaked and little biogenic SOA formation during the day when RH decreased.  相似文献   

5.
In order to investigate the secondary organic aerosol (SOA) response to changes in biogenic volatile organic compounds (VOC) emissions in the future atmosphere and how important will SOA be relative to the major anthropogenic aerosol component (sulfate), the global three-dimensional chemistry/transport model TM3 has been used. Emission estimates of biogenic VOC (BVOC) and anthropogenic gases and particles from the literature for the year 2100 have been adopted.According to our present-day model simulations, isoprene oxidation produces 4.6 Tg SOA yr−1, that is less than half of the 12.2 Tg SOA yr−1 formed by the oxidation of other BVOC. In the future, nitrate radicals and ozone become more important than nowadays, but remain minor oxidants for both isoprene and aromatics. SOA produced by isoprene is estimated to almost triple, whereas the production from other BVOC more than triples. The calculated future SOA burden change, from 0.8 Tg at present to 2.0 Tg in the future, is driven by changes in emissions, oxidant levels and pre-existing particles. The non-linearity in SOA formation and the involved chemical and physical feedbacks prohibit the quantitative attribution of the computed changes to the above-mentioned individual factors. In 2100, SOA burden is calculated to exceed that of sulfate, indicating that SOA might become more important than nowadays. These results critically depend on the biogenic emissions and thus are subject to the high uncertainty associated with these emissions estimated due to the insufficient knowledge on plant response to carbon dioxide changes. Nevertheless, they clearly indicate that the change in oxidants and primary aerosol caused by human activities can contribute as much as the change in BVOC emissions to the increase of the biogenic SOA production in the future atmosphere.  相似文献   

6.
We investigate how a recently suggested pathway for production of secondary organic aerosol (SOA) affects the consistency of simulated organic aerosol (OA) mass in a global three-dimensional model of oxidant-aerosol chemistry (GEOS-Chem) versus surface measurements from the interagency monitoring of protected visual environments (IMPROVE) network. Simulations in which isoprene oxidation products contribute to SOA formation, with a yield of 2.0% by mass reduce a model bias versus measured OA surface mass concentrations. The resultant increase in simulated OA mass concentrations during summer of 0.6–1.0 μg m−3 in the southeastern United States reduces the regional RMSE to 0.88 μg m−3 from 1.26 μg m−3. Spring and fall biases are also reduced, with little change in winter when isoprene emissions are negligible.  相似文献   

7.
Monthly average ambient concentrations of more than eighty particle-phase organic compounds, as well as total organic carbon (OC) and elemental carbon (EC), were measured from March 2004 through February 2005 in five cities in the Midwestern United States. A multi-variant source apportionment receptor model, positive matrix factorization (PMF), was applied to explore the average source contributions to the five sampling sites using molecular markers for primary and secondary organic aerosols (POA, SOA). Using the molecular makers in the model, POA and SOA were estimated for each month at each site. Three POA factors were derived, which were dominated by primary molecular markers such as EC, hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs), and which represented the following POA sources: urban primary sources, mobile sources, and other combustion sources. The three POA sources accounted for 57% of total average ambient OC. Three factors, characterized by the presence of reaction products of isoprene, α-pinene and β-caryophyllene, and displaying distinct seasonal trends, were consistent with the characteristics of SOA. The SOA factors made up 43% of the total average measured OC. The PMF-derived results are in good agreement with estimated SOA concentrations obtained from SOA to tracer yield estimates obtained from smog chamber experiments. A linear regression comparing the smog chamber yield estimates and the PMF SOA contributions had a regression slope of 1.01 ± 0.07 and an intercept of 0.19 ± 0.10 μg OC m?3 (adjusted R2 of 0.763, n = 58).  相似文献   

8.
The UCD/CIT air quality model with the Caltech Atmospheric Chemistry Mechanism (CACM) was used to predict source contributions to secondary organic aerosol (SOA) formation in the San Joaquin Valley (SJV) from December 15, 2000 to January 7, 2001. The predicted 24-day average SOA concentration had a maximum value of 4.26 μg m?3 50 km southwest of Fresno. Predicted SOA concentrations at Fresno, Angiola, and Bakersfield were 2.46 μg m?3, 1.68 μg m?3, and 2.28 μg m?3, respectively, accounting for 6%, 37%, and 4% of the total predicted organic aerosol. The average SOA concentration across the entire SJV was 1.35 μg m?3, which accounts for approximately 20% of the total predicted organic aerosol. Averaged over the entire SJV, the major SOA sources were solvent use (28% of SOA), catalyst gasoline engines (25% of SOA), wood smoke (16% of SOA), non-catalyst gasoline engines (13% of SOA), and other anthropogenic sources (11% of SOA). Diesel engines were predicted to only account for approximately 2% of the total SOA formation in the SJV because they emit a small amount of volatile organic compounds relative to other sources. In terms of SOA precursors within the SJV, long-chain alkanes were predicted to be the largest SOA contributor, followed by aromatic compounds. The current study identifies the major known contributors to the SOA burden during a winter pollution episode in the SJV, with further enhancements possible as additional formation pathways are discovered.  相似文献   

9.
A three-part study was conducted to quantify the impact of landscaped vegetation on air quality in a rapidly expanding urban area in the arid southeastern United States. The study combines in situ, plant-level measurements, a spatial emissions inventory, and a photochemical box model. Maximum plant-level basal emission rates were moderate: 18.1 μgC gdw?1 h?1 (Washingtonia spp., palms) for isoprene and 9.56 μgC gdw?1 h?1 (Fraxinus velutina, Arizona ash) for monoterpenes. Sesquiterpene emission rates were low for plant species selected in this study, with no measurement exceeding 0.1 μgC gdw?1 h?1. The high ambient temperatures combined with moderate plant-level emission factors resulted in landscape emission factors that were low (250–640 μgC m?2 h?1) compared to more mesic environments (e.g., the southeastern United States). The Regional Atmospheric Chemistry Mechanism (RACM) was modified to include a new reaction pathway for ocimene. Using measured concentrations of anthropogenic hydrocarbons and other reactive air pollutants (NOx, ozone), the box model employing the RACM mechanism revealed that these modest emissions could have a significant impact on air quality. For a suburban location that was downwind of the urban core (high NOx; low anthropogenic hydrocarbons), biogenic terpenes increased time-dependent ozone production rates by a factor of 50. Our study demonstrates that low-biomass density landscapes emit sufficient biogenic terpenes to have a significant impact on regional air quality.  相似文献   

10.
We use a global 3-D atmospheric chemistry model (GEOS-Chem) to simulate surface and aircraft measurements of organic carbon (OC) aerosol over eastern North America during summer 2004 (ICARTT aircraft campaign), with the goal of evaluating the potential importance of a new secondary organic aerosol (SOA) formation pathway via irreversible uptake of dicarbonyl gases (glyoxal and methylglyoxal) by aqueous particles. Both dicarbonyls are predominantly produced in the atmosphere by isoprene, with minor contributions from other biogenic and anthropogenic precursors. Dicarbonyl SOA formation is represented by a reactive uptake coefficient γ = 2.9 × 10?3 and takes place mainly in clouds. Surface measurements of OC aerosol at the IMPROVE network in the eastern U.S. average 2.2 ± 0.7 μg C m?3 for July–August 2004 with little regional structure. The corresponding model concentration is 2.8 ± 0.8 μg C m?3, also with little regional structure due to compensating spatial patterns of biogenic, anthropogenic, and fire contributions. Aircraft measurements of water-soluble organic carbon (WSOC) aerosol average 2.2 ± 1.2 μg C m?3 in the boundary layer (<2 km) and 0.9 ± 0.8 μg C m?3 in the free troposphere (2–6 km), consistent with the model (2.0 ± 1.2 μg C m?3 in the boundary layer and 1.1 ± 1.0 μg C m?3 in the free troposphere). Source attribution for the WSOC aerosol in the model boundary layer is 27% anthropogenic, 18% fire, 28% semi-volatile SOA, and 27% dicarbonyl SOA. In the free troposphere it is 13% anthropogenic, 37% fire, 23% semi-volatile SOA, and 27% dicarbonyl SOA. Inclusion of dicarbonyl SOA doubles the SOA contribution to WSOC aerosol at all altitudes. Observed and simulated correlations of WSOC aerosol with other chemical variables measured aboard the aircraft suggest a major SOA source in the free troposphere compatible with the dicarbonyl mechanism.  相似文献   

11.
The effect of HOx radicals (OH and HO2) and ozone (O3) on aerosol formation and aging has been studied. Experiments were performed in presence as well as in absence of oxygen in a flow-through chamber at 299 K for three organic precursor gases, isoprene, α-pinene and m-xylene. The HOx source was the UV photolysis of humidified air or nitrogen and was measured with a GTHOS (Ground-based Tropospheric Hydrogen Oxides Sensor). The precursor gases concentration was monitored with an online GC-FID. The aerosol mass was then quantified by a Tapered Element Oscillating Microbalance (TEOM). Typical oxidant mixing ratios were (0–4.5) ppm for O3, 200 pptv for OH and 3 ppbv for HO2. A simple kinetics model is used to infer the aerosol production mechanism. In the present of O3 (or O2), the SOA yields were 0.46, 0.036 and 0.12 for α-pinene with an initial concentration of 100 ppbv (RH = 37%), isoprene with an initial concentration of 177 ppbv (RH = 50%) and m-xylene with an initial concentration of 100 ppbv (RH = 37%), respectively. When the chosen precursor gases reacted with HOx in the absence of O3, the maximum SOA yields were significantly increased by factors of 1.6 for isoprene 1.1 for α-pinene, and 3 for m-xylene respectively. The comparison of the calculated and measured potential aerosol mass concentrations as function of time shows that presence of ozone or oxygen can influence the aerosol yield and the absence of ozone or oxygen in the system resulted in high concentrations of its organic aerosol products.  相似文献   

12.
Intensive measurements of aerosol (PM10) and associated water-soluble ionic and carbonaceous species were conducted in Guangzhou, a mega city of China, during summer 2006. Elevated levels of most chemical species were observed especially at nighttime during two episodes, characterized by dramatic build-up of the biomass burning tracers levoglucosan and non-sea-salt potassium, when the prevailing wind direction had changed due to two approaching tropical cyclones. High-resolution air mass back trajectories based on the MM5 model revealed that air masses with high concentrations of levoglucosan (43–473 ng m?3) and non-sea-salt potassium (0.83–3.2 μg m?3) had passed over rural regions of the Pearl River Delta and Guangdong Province, where agricultural activities and field burning of crop residues are common practices. The relative contributions of biomass burning smoke to organic carbon in PM10 were estimated from levoglucosan data to be on average 7.0 and 14% at daytime and nighttime, respectively, with maxima of 9.7 and 32% during the episodic transport events, indicating that biomass and biofuel burning activities in the rural parts of the Pearl River Delta and neighboring regions could have a significant impact on ambient urban aerosol levels.  相似文献   

13.
The aqueous ozonolysis of α-pinene and β-pinene was conducted under simulated tropospheric conditions at different pHs and temperatures. Three kinds of products, peroxides, carbonyl compounds, and organic acids, were well characterized, and the detection of these products provides effective evidence for understanding the atmospheric aqueous reaction pathway. We have two interesting findings: (1) the unexpected formation of methacrolein (MACR), with a yield of ~40%, in the α-pinene–O3 aqueous reaction indicates a potentially new SOA formation pathway, because MACR is one of the important precursors of SOA; and (2) the surprisingly high yields of H2O2, ~60% for the α-pinene–O3 reaction and ~100% for the β-pinene–O3 reaction, indicates that H2O2 can be a significant contributor to the origin and transformation of oxidants in the atmosphere, especially in the humid regions. Moreover, we have determined the rate constant for aqueous reaction between MACR and H2O2 in pH 2 to 7 and obtained its upper limit as 0.13 M L?1 s?1. A mechanism concerning the formation of the species mentioned above is proposed, and it differs from that in the gas-phase reaction. We suggest that water plays a key role in the mechanism, by participating in the reactions as a direct reactant and by removing the excess energy of intermediates formed in the reactions.  相似文献   

14.
Canopy scale emissions of isoprene and monoterpenes from Amazonian rainforest were measured by eddy covariance and eddy accumulation techniques. The peak mixing ratios at about 10 m above the canopy occurred in the afternoon and were typically about 90 pptv of α-pinene and 4–5 ppbv of isoprene. α-pinene was the most abundant monoterpene in the air above the canopy comprising ≈50% of the total monoterpene mixing ratio. Measured isoprene fluxes were almost 10 times higher than α-pinene fluxes. Normalized conditions of 30°C and 1000 μmol m−2 s−1 were associated with an isoprene flux of 2.4 mg m−2 h−1 and a β-pinene flux of 0.26 mg m−2 h−1. Both fluxes were lower than values that have been specified for Amazon rainforests in global emission models. Isoprene flux correlated with a light- and temperature-dependent emission activity factor, and even better with measured sensible heat flux. The variation in the measured α-pinene fluxes, as well as the diurnal cycle of mixing ratio, suggest emissions that are dependent on both light and temperature. The light and temperature dependence can have a significant effect on the modeled diurnal cycle of monoterpene emission as well as on the total monoterpene emission.  相似文献   

15.
This study targets understanding the secondary sources of organic aerosol in Mexico City during the Megacities Impact on Regional and Global Environment (MIRAGE) 2006 field campaign. Ambient PM2.5 was collected daily at urban and peripheral locations. Particle-phase secondary organic aerosol (SOA) products of anthropogenic and biogenic precursor gases were measured by gas chromatography mass spectrometry. Ambient concentrations of SOA tracers were used to estimate organic carbon (OC) from secondary origins (SOC). Anthropogenic SOC was estimated as 20–25% of ambient OC at both sites, while biogenic SOC was less abundant, but was relatively twice as important at the peripheral site. The OC that was not attributed secondary sources or to primary sources in a previous study showed temporal consistency with biomass-burning events, suggesting the importance of secondary processing of biomass-burning emissions in the region. The best estimate of biomass-burning-related SOC was in the range of 20–30% of ambient OC during peak biomass burning events. Low-molecular weight (MW) alkanoic and alkenoic dicarboxylic acids (C2–C5) were also measured, of which oxalic acid was the most abundant. The spatial and temporal trends of oxalic acid differed from tracers for primary and secondary sources, suggesting that it had different and/or multiple sources in the atmosphere.  相似文献   

16.
This work merges kinetic models for α-pinene and d-limonene which were individually developed to predict secondary organic aerosol (SOA) formation from these compounds. Three major changes in the d-limonene and α-pinene combined mechanism were made. First, radical–radical reactions were integrated so that radicals formed from both individual mechanisms all reacted with each other. Second, all SOA model species from both compounds were used to calculate semi-volatile partitioning for new semi-volatiles formed in the gas phase. Third particle phase reactions for particle phase α-pinene and d-limonene aldehydes, carboxylic acids, etc. were integrated. Experiments with mixtures of α-pinene and d-limonene, nitric oxide (NO), nitrogen dioxide (NO2), and diurnal natural sunlight were carried out in a dual 270 m3 outdoor Teflon film chamber located in Pittsboro, NC. The model closely simulated the behavior and timing for α-pinene, d-limonene, NO, NO2, O3 and SOA. Model sensitivities were tested with respect to effects of d-limonene/α-pinene ratios, initial hydrocarbon to NOx (HC0/NOx) ratios, temperature, and light intensity. The results showed that SOA yield (YSOA) was very sensitive to initial d-limonene/α-pinene ratio and temperature. The model was also used to simulate remote atmospheric SOA conditions that hypothetically could result from diurnal emissions of α-pinene, d-limonene and NOx. We observed that the volatility of the simulated SOA material on the aging aerosol decreased with time, and this was consistent with chamber observations. Of additional importance was that our simulation did not show a loss of SOA during the daytime and this was consistent with observed measurements.  相似文献   

17.
The formation of secondary organic aerosol (SOA) produced from linalool ozonolysis was examined using a dynamic chamber system that allowed the simulation of ventilated indoor environments. Experiments were conducted under room temperature (22–23 °C) and air exchange rate of 0.67 h?1. An effort was made to maintain the product of the concentrations of the two reagents constant. The results suggest that under the conditions when the product of the two reagent concentrations was constant, the relative concentrations play an important role in determining the total SOA formed. A combination of concentrations somewhere in ozone limiting region will produce the maximum SOA concentration. The measured reactive oxygen species (ROS) concentrations at linalool and ozone concentrations relevant to prevailing indoor concentrations ranged from 0.71 to 2.53 nmol m?3 equivalents of H2O2. It was found that particle samples aged for 24 h lost a significant fraction of the ROS compared to fresh samples. The residual ROS concentrations were around 15–69%. Compared with other terpene species like α-pinene that has one endocyclic unsaturated carbon bond, linalool was less efficient in potential SOA formation yields.  相似文献   

18.
Seasonal variations of biogenic volatile organic compound (VOC) emission rates and standardised emission factors from gorse (Ulex europaeus) have been measured at two sites in the United Kingdom, from October 1994 to September 1995, within temperature and PAR conditions ranging from 3 to 34°C and 10–1300 μmol m−2 s−1, respectively. Isoprene was the dominant emitted compound with a relative composition fluctuating from 7% of the total VOC (winter) to 97% (late summer). The monoterpenes α-pinene, camphene, sabinene, β-pinene, myrcene, limonene, trans-ocimene and γ-terpinene were also emitted, with α-pinene being the dominant monoterpene during most the year. Trans-ocimene represented 33–66% of the total monoterpene during the hottest months from June to September. VOC emissions were found to be accurately predicted using existing algorithms. Standard (normalised) emission factors of VOCs from gorse were calculated using experimental parameters measured during the experiment and found to fluctuate with season, from 13.3±2.1 to 0.1±0.1 μg C (g dwt)−1 h−1 in August 1995 and January 1995, respectively, for isoprene, and from 2.5±0.2 to 0.4±0.2 μg C (g dwt)−1 h−1 in July and November 1995, respectively, for total monoterpenes. No simple clear relation was found to allow prediction of these seasonal variations with respect to temperature and light intensity. The effects of using inappropriate algorithms to derive VOC fluxes from gorse were assessed for isoprene and monoterpenes. Although on an annual basis the discrepancies are not significant, monthly estimation of isoprene were found to be overestimated by more than a factor of 50 during wintertime when the seasonality of emission factors is not considered.  相似文献   

19.
Regional estimates of fluxes of volatile organic compounds (VOCs) are required to improve our understanding of their role in the chemistry of the atmosphere. Flux measurements on such a scale can best be obtained using aircraft-based systems. These systems usually rely on the eddy covariance technique, which requires fast response gas sensors for flux measurement, but such sensors are not available for most organic compounds, therefore, the relaxed eddy-accumulation (REA) technique was selected. An aircraft-based REA sampling system was developed and used to measure isoprene emission over the boreal forest during the 1996 summer. Over a short period in July at the Boreal Ecosystem/Atmosphere Study (BOREAS) southern study area (SSA), the isoprene fluxes ranged from −0.06 to 1.79 μg m-2 s-1, with a mean of 0.59±0.34 μg m-2 s-1, while in August at the BOREAS northern study area (NSA) the isoprene fluxes ranged from 0.00 to 0.26 μg m-2 s-1, with a mean of 0.14±0.09 μg m-2 s-1. In the SSA, the isoprene fluxes over aspen ranged from 0.44 to 1.79 μg m-2 s-1, with a mean of 0.92±0.33 μg m-2 s-1, whereas over black spruce, isoprene fluxes ranged from −0.06 to 0.54 μg m-2 s-1, with a mean of 0.36±0.21 μg m-2 s-1. The isoprene fluxes were exponentially correlated with solar radiation and radiative surface temperature. High correlations between isoprene fluxes and the fluxes of CO2 and latent heat were also observed. Carbon lost through isoprene emissions was about 0.7 and 0.8% of the CO2 assimilation rate for aspen and black spruce, respectively. The results demonstrate that the aircraft-based relaxed eddy-accumulation technique is a promising approach for quantifying the atmosphere–surface exchange of VOCs on a regional scale.  相似文献   

20.
Temperature was found to have a dramatic effect on secondary organic aerosol formation from two ozonolysis systems, cyclohexene and α-pinene. Isothermal experiments were conducted for both systems where the lowest temperature, 278 K, formed approximately 2.5–3 times and 5–6 times the SOA formed at 300 K and 318 K, respectively. Changing the cyclohexene system temperature to a different isothermal experimental set point after completion of SOA formation did not lead to sufficient condensation/evaporation to reproduce the SOA formation at other temperature set points. When the system temperature was cycled between two set points at the end of an experiment, the α-pinene system showed reversibility between the initial temperature 318 K and 300 K. For temperature cycles between the initial temperature of 300 K–318 K, an irreversible loss of mass is observed after the first heating cycle with reversibility observed between subsequent temperature cycles. The SOA formed at 278 K was reversible over a 22 K range but was unable to evaporate sufficiently to match the SOA mass formed at 300 K. Hygroscopicity measurements, taken after the completion of SOA formation, indicate that hygroscopicity of the aerosol is also a function of temperature and that the aerosol does not continue to be oxidized after initial growth is complete. The differing hygroscopicity of the semi-volatile component of the aerosol is evident during system temperature changes after completion of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号