首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ogawa N  Okamura H  Hirai H  Nishida T 《Chemosphere》2004,55(3):487-491
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), a derivative of s-triazine herbicide, is an antifouling compound used as an alternative to organotins. The compound is highly persistent and is known to be biodegraded only by the white rot fungus, Phanerochaete chrysosporium. We used partially purified manganese peroxidase (MnP) prepared from P. chrysosporium to evaluate its capacity to degrade Irgarol 1051. MnP degraded Irgarol 1051 to two major products, one identified as M1 (identical to GS26575, 2-methylthio-4-tert-butylamino-6-amino-s-triazine) and the other not identified but with same mass spectrum as M1 and a different ultraviolet spectrum. This report clearly demonstrates that this ligninolytic enzyme is involved in the degradation of Irgarol 1051.  相似文献   

2.
Okamura H  Sugiyama Y 《Chemosphere》2004,57(7):739-743
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine) is a herbicide analogue that is added to antifouling agents used on ships. Our former study on its degradation in sunlight suggested that unknown photosensitizers in natural waters accelerated the photodegradation to the degradation product, M1. In this study, the photodegradation of Irgarol in water was investigated in the presence of some photosensitizers. Test water containing Irgarol or M1, with or without photosensitizers, was irradiated with light from a UV-A fluorescent lamp for 48h. The concentrations of Irgarol and M1 in the test water were determined by HPLC after solid-phase extraction. M1 was more stable than Irgarol when irradiated in the presence of photosensitizers such as acetone, benzophenone, tryptophan, and rose bengal. Hydrogen peroxide (HP) accelerated the photodegradation of Irgarol, and the product M1 was degraded in the presence of more than 100mgl(-1) HP after 10h. Natural humic substances (NHS) also accelerated the photodegradation of Irgarol, but in this case, the product M1 persisted even when Irgarol was completely degraded. Photosensitized degradation of Irgarol by NHS may result in the accumulation of M1 in aquatic environments.  相似文献   

3.
A simple, rapid toxicity test was developed using the suspension-cultured fish cell line CHSE-sp derived from chinook salmon Oncorhynchus tshawytscha embryos in order to assess the toxicity of new marine antifouling compounds. The compounds tested were copper pyrithione, Diuron, Irgarol 1051, KH101, Sea-Nine 211, and zinc pyrithione, all of which have been nominated in Japan as possible replacements for organotin compounds. The in vitro acute toxicity (24-h EC50) of the six compounds to these fish cells was evaluated using the dye Alamar Blue to determine cell viability, and then correlated with the results of in vivo chronic toxicities (28-day LC50) to juvenile rainbow trout Oncorhynchus mykiss. The suspension-cultured fish cells were found to be suitable for the screening of such chemicals before performing an in vivo test. The toxicities of the test compounds obtained from both tests, shown in decreasing order, were as follows: copper pyrithione > zinc pyrithione > KH101 > or = Sea-Nine 211 > Diuron > Irgarol 1051. The herbicides Diuron and Irgarol 1051 showed the least toxicity, while the pyrithiones had the greatest toxicity.  相似文献   

4.
Tolhurst LE  Barry J  Dyer RA  Thomas KV 《Chemosphere》2007,68(8):1519-1524
The effect of resuspending sediment contaminated with Irgarol 1051 based antifouling paint particles on the green macroalga Ulva intestinalis was examined. U. intestinalis was also exposed to sediment spiked with Irgarol 1051. The macroalga were exposed over 21 days to the resuspension of sediments containing 61.2 mg kg(-1) of antifouling paint particles containing Irgarol 1051 that provided aqueous Irgarol 1051 concentrations of approximately 0.3 microg l(-1), Irgarol 1051 and appropriate controls. The growth response was compared with that for 'clean' sediment. Resuspension of sediment was associated with reduced growth when compared to seawater alone. Resuspension of sediment spiked with Irgarol 1051 was associated with a greater reduction in growth, with growth being significantly reduced when sediment containing antifouling paint particles was resuspended. The data suggest that the prolonged disturbance of sediments containing antifouling paint particles in marinas represents a potential and as yet unquantified hazard to photosynthetic organisms.  相似文献   

5.
Current regulatory risk assessment procedures only assess the impact of antifouling paint biocides that are released through leaching from a painted surface. Hull cleaning activities can lead to particles of antifouling paint containing biocides to enter the environment. Comparative pseudo-first order anaerobic degradation rate constants and half-lives were determined for a selection of common antifouling paint booster biocides, their degradation products, and associated with paint particles. Anaerobic half-lives of <0.5 days were calculated for chlorothalonil, dichlofluanid, and SeaNine 211, between 1 and 3 days for DCPMU and DCPU, between 14 and 35 days for diuron and CPDU, and over 226 days for GS26575 and Irgarol 1051. Increased persistence was observed when the compounds were introduced to sediments associated with antifouling paint particles. When present as antifouling paint particles, an increased half-life of 9.9 days for SeaNine 211 and 1.4 days was calculated for dichlofluanid, no significant degradation was observed for diuron. It is suspected that this is due to much of the biocide being initially bound within the matrix of the paint particle that is slowly released through dissolution processes into the sediment pore water prior to degradation. The release of booster biocides associated with paint particles into marinas has the potential to lead to their accumulation unless activities such as hull cleaning are strictly regulated.  相似文献   

6.
A previously unknown s-triazine species present in commercially available Irgarol-1051, a booster biocide additive in copper-based antifouling paints for the replacement of organotin-based antifoulants, has been identified in the coastal aquatic environment. After careful isolation, purification and characterization by high resolution MS-MS and (1)H NMR, the molecular structure of that unknown species is found to be N,N'-di-tert-butyl-6-methylthiol-s-triazine-2,4-diamine (designated as M3). Levels of Irgarol-1051, its major degradation product (M1) and the newly identified M3 in the coastal waters of Hong Kong, one of the world's busiest ports located in the southern coast of China, were monitored by SPME-GC-MS and SPME-GC-FID. Water samples from five locations within Hong Kong waters were analysed and the levels of Irgarol-1051, M1 and M3 were found to be 0.1-1.6 microg l(-1), 36.8-259.0 microg l(-1) and 0.03-0.39 microg l(-1), respectively. Our results indicate that M3 is relatively stable against photo- and bio-degradation and may pose considerable risk to primary producer communities in the coastal marine environment.  相似文献   

7.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

8.
Comparative environmental assessment of biocides used in antifouling paints   总被引:1,自引:0,他引:1  
In response to increasing scientific evidence on the toxicity and persistence of organotin residues from antifouling paints in the aquatic environment, the use of triorganotin antifouling products was banned on boats of less than 25 m length in many countries during 1987. Alternatives to tributyltin (TBT) paint are mainly copper based coatings containing organic booster biocides to improve the efficacy of the formulation, and have been utilised on small boats for the last 10 years. With policies encouraging a total ban on TBT, it is expected that these biocides will be used to a greater extent in the future. Limited data and information are available on the environmental occurrence, fate, toxicity, and persistence of these biocides, and thus any decisions on policies regulating antifoulants cannot be fully informed. In this study, a multicriteria comparison of alternative biocides, based on a general assessment of available information in the literature, provided support for the use of the precautionary principle with respect to policies on antifouling products. This assessment was validated by a more detailed comparison of four selected biocides and TBT. Results indicate that TCMS pyridine and TCMTB demonstrate environmental characteristics similar to TBT and thus detail risk assessments are needed before their use is permitted. The widespread use of the other biocides should be allowed only after research to fill the gaps in knowledge with respect to their toxicity and persistence in aquatic environments.  相似文献   

9.
Background N-methylcarbamate insecticides are widely used chemicals for crop protection. This study examines the hydrolytic and photolytic cleavage of benfuracarb, carbosulfan and carbofuran under natural conditions. Their toxicity and that of the corresponding main degradation products toward aquatic organisms were evaluated. Methods Suspensions of benfuracarb, carbosulfan and carbofuran in water were exposed to sunlight, with one set of dark controls, for 6 days, and analyzed by 1H-NMR and HPLC. Acute toxicity tests were performed on Brachionus calyciflorus, Daphnia magna, and Thamnocefalus platyurus. Chronic tests were performed on Pseudokirchneriella subcapitata, and Ceriodaphnia dubia. Results and Discussion Under sunlight irradiation, benfuracarb and carbosulfan gave off carbofuran and carbofuran-phenol, while only carbofuran was detected in the dark experiments. The latter was degraded to phenol by exposure to sunlight. Effects of pH, humic acid and KNO3 were evaluated by kinetics on dilute solutions in the dark and by UV irradiation, which evidenced the lability of the pesticide at pH 9. All three pesticides and phenol exhibited acute and higher chronic toxicity towards the aquatic organisms tested. Conclusion Investigation on the hydrolysis and photolysis of benfuracarb and carbosulfan under natural conditions provides evidence concerning the selective decay to carbofuran and/or phenol. Carbofuran is found to be more persistent and toxic. Recommendations and Outlook The decay of benfuracarb and carbosulfan to carbofuran and the relative stability of this latter pesticide account for many papers that report the detection of carbofuran in water, fruits and vegetables.  相似文献   

10.
A 2-year study was implemented to characterize the contamination of estuarine continuums in the Bay of Vilaine area (NW Atlantic Coast, Southern Brittany, France) by 30 pesticide and biocide active substances and metabolites. Among these, 11 triazines (ametryn, atrazine, desethylatrazine, desethylterbuthylazine, desisopropyl atrazine, Irgarol 1051, prometryn, propazine, simazine, terbuthylazine, and terbutryn), 10 phenylureas (chlortoluron, diuron, 1-(3,4-dichlorophenyl)-3-methylurea, fenuron, isoproturon, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl)-urea, linuron, metoxuron, and monuron), and 4 chloroacetanilides (acetochlor, alachlor, metolachlor, and metazachlor) were detected at least once. The objectives were to assess the corresponding risk for aquatic primary producers and to provide exposure information for connected studies on the responses of biological parameters in invertebrate sentinel species. The risk associated with contaminants was assessed using risk quotients based on the comparison of measured concentrations with original species sensitivity distribution-derived hazardous concentration values. For EU Water Framework Directive priority substances, results of monitoring were also compared with regulatory Environmental Quality Standards. The highest residue concentrations and risks for primary producers were recorded for diuron and Irgarol 1051 in Arzal reservoir, close to a marina. Diuron was present during almost the all survey periods, whereas Irgarol 1051 exhibited a clear seasonal pattern, with highest concentrations recorded in June and July. These results suggest that the use of antifouling biocides is responsible for a major part of the contamination of the lower part of the Vilaine River course for Irgarol 1051. For diuron, agricultural sources may also be involved. The presence of isoproturon and chloroacetanilide herbicides on some dates indicated a significant contribution of the use of plant protection products in agriculture to the contamination of Vilaine River. Concentration levels and associated risk were always lower in estuarine sites than in the reservoir, suggesting that Arzal dam reduces downstream transfer of contaminants and favors their degradation in the freshwater part of the estuary. Results of the additional monitoring of two tidal streams located downstream of Arzal dam suggested that, although some compounds may be transferred to the estuary, their impact was probably very low. Dilution by marine water associated with tidal current was also a major factor of concentration reduction. It is concluded that the highest risks associated to herbicides and booster biocides concerned the freshwater part of the estuary and that its brackish/saltwater part was exposed to a moderate risk, although some substances may sometimes exhibit high concentration but mainly at low tide and on an irregular basis.  相似文献   

11.
Lambert SJ  Thomas KV  Davy AJ 《Chemosphere》2006,63(5):734-743
Antifouling paints are used to reduce the attachment of living organisms to the submerged surfaces of ships, boats and aquatic structures, usually by the release of a biocide. Two 'booster' biocides in common use are the triazine herbicide Irgarol 1051 (N-2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), and diuron (1-(3,4-dichlorophenyl)-3,3-dimethylurea), which are designed to inhibit algal photosynthesis. Previous research has been directed at the effects of these compounds in marine and estuarine environments. In 2001 we sampled the main rivers and shallow freshwater lakes (Broads) of East Anglia UK for Irgarol 1051, its metabolite GS26575 (2-methylamino-4-tert-butylamino-6-amino-s-triazine) and diuron in order to establish the baseline environmental concentrations of these compounds in freshwater systems of eastern UK and to investigate their possible effects on aquatic plants. Irgarol 1051, GS26575 and diuron were found in water samples collected from 21 locations. The highest concentrations were found in the Norfolk and Suffolk Broads in May. The rivers Great Ouse, Wissey, Bure and Yare also contained all three compounds, as did the Great Ouse Cut-off Channel. The toxicity of these biocides to three macrophyte species (Apium nodiflorum, Chara vulgaris, and Myriophyllum spicatum) was investigated. Deleterious effects on relative growth rate, the maximum quantum efficiency (Fv/Fm) of photosystem II and, for Apium, root mass production were found. C. vulgaris was generally most sensitive; growth, especially of roots, was strongly affected in A. nodiflorum; growth rate of M. spicatum was sensitive to diuron. No observed effect concentrations (NOEC) were interpolated using standard toxicological analysis. These were compared with measured environmental concentrations (MEC) to determine the ranges of risk quotients (MEC/NOEC). Both Irgarol 1051 and diuron represented significant risks to A. nodiflorum and C. vulgaris in this area.  相似文献   

12.
The antifouling herbicide Irgarol 1051 has been detected in recent years in numerous estuaries, marinas, harbors and coastal areas, and in some harbors on Lake Geneva, but so far only a few studies have investigated the ecotoxicological effects of this compound on microalgae. The purpose of this study was to assess the ecotoxicological impact of Irgarol 1051 on the algal communities of Lake Geneva, and to compare its phytotoxicity to that of the common triazine herbicide, atrazine. We investigated the response of phytoplanktonic and periphytonic algal communities and single-species isolates collected from the lake, to the PS II inhibitor Irgarol 1051 (growth, proxy of photosynthetic activity and community structure). A short-term bioassay was developed based on in vivo fluorescence, together with nanocosm experiments with natural algal communities, and single-species tests on algal strains isolated from the lake. The toxicity of Irgarol 1051 towards periphyton and phytoplankton was shown to be higher than that of atrazine. Indications of the tolerance induced by this triazine in the algal communities of Lake Geneva, suggests that even at the levels of contamination reported in some parts of the lake, Irgarol 1051 is already exerting selection pressure. Information about sensitivities, selection and tolerance from laboratory experiments are used to explain the observations in natural microalgal communities from the lake.  相似文献   

13.
Fate of pharmaceuticals--photodegradation by simulated solar UV-light   总被引:6,自引:0,他引:6  
Doll TE  Frimmel FH 《Chemosphere》2003,52(10):1757-1769
The fate of pharmaceuticals in surface waters under solar irradiation was investigated. Photodegradation of pharmaceuticals caused by sun irradiation may be of major significance in the natural elimination process. Based on a data compilation from the literature, the lipid lowering agent metabolite clofibric acid, the iodinated X-ray contrast media iomeprol, which contribute to the adsorbable organic halogen compounds, and the antiepileptic drug carbamazepine were selected. The irradiation experiments were carried out in batch experiments with simulated UV–sunlight. The photodegradation of the pharmaceuticals showed a pseudo-first-order kinetics. The objective of this investigation was to demonstrate that the extent of photoinduced degradation of pharmaceuticals can vary significantly for the different pharmaceuticals and it strongly depends on the water constituents present in solution. The influences of different initial pharmaceutical concentrations, the presence of other pharmaceuticals like carbamazepine or clofibric acid and the presence of natural organic matter on the photochemical degradation rate of pharmaceuticals in aqueous solutions were investigated. Analyses of the pharmaceuticals and their photodegradation products were carried out by high performance liquid chromatography with diode-array and fluorescence detection.  相似文献   

14.
Analytical procedures for the determination of nine organic booster biocides which are currently licensed for use in marine antifouling paints, and are thought likely to occur at concentrations in the ng 1−1 range in estuarine water samples, are reviewed. A robust multiresidue method for the determination of four compounds (chlorothalonil, dichlofluanid, diuron and Irgarol 1051) is suggested. A route for the development of a method for the analysis of zinc pyrithione is outlined, based on an extraction method and subsequent derivatisation prior to determination by HPLC with fluorescence detection. Methodology for Zineb, Kathon 5287, TCMS pyridine and TCMTB is less clearly defined.  相似文献   

15.
Using short-term hemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of Diuron (3-(3,4-diclorophenyl)-1,1-dimethylurea) and TCMS pyridine (2,3,5,6-tetrachloro-4-(metylsulphonyl)pyridine), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. At concentrations higher than 250 micro M and 10 micro M for Diuron and TCMS pyridine, respectively, both biocides exerted immunosuppressant effects on Botryllus hemocytes, causing i) deep changes in the cytoskeleton that irreversibly affect cell morphology and phagocytosis, ii) induction of DNA damage, iii) leakage of oxidative and hydrolytic enzymes due to membrane alteration. Unlike organotin compounds, Diuron and TCMS pyridine do not inhibit cytochrome-c-oxidase, and only TCMS pyridine triggers oxidative stress. When co-present, they exert an antagonistic interaction on cytoskeletal components.  相似文献   

16.
The effect of the alkyl chain of quaternary ammonium-based surfactants on their aquatic toxicity and aerobic biodegradability has been studied. Two families of monoalkylquats surfactants were selected: alkyl trimethyl ammonium and alkyl benzyl dimethyl ammonium halides. Acute toxicity tests on Daphnia magna and Photobacterium phosphoreum were carried out and EC50 values in the range of 0.1-1 mg/l were obtained for the two series of cationic surfactants. Although the substitution of a benzyl group for a methyl group increases the toxicity, an incremental difference in toxicity between homologs of different chain length were not observed. Biodegradability of the different homologs was determined not only in standard conditions but also in coastal water, both tests yielding similar results. An increase in the alkyl chain length or the substitution of a benzyl group for a methyl group reduces the biodegradation rate. The degradation of these compounds in coastal waters was associated with an increase in bacterioplankton density, suggesting that the degradation takes place because the compound is used as a growth substrate.  相似文献   

17.
The marine macroalga, Ulva lactuca, has been exposed to different concentrations of antifouling paint particles (4–200 mg L?1) in the presence of a fixed quantity of clean estuarine sediment and its photosynthetic response and accumulation of Cu and Zn monitored over a period of 2 days. An immediate (<2 h) toxic effect was elicited under all experimental conditions that was quantitatively related to the concentration of contaminated particles present. Likewise, the rate of leaching of both Cu and Zn was correlated with the concentration of paint particles added. Copper accumulation by the alga increased linearly with aqueous Cu concentration, largely through adsorption to the cell surface, but significant accumulation of Zn was not observed. Thus, in coastal environments where boat maintenance is practiced, discarded antifouling paint particles are an important source of Cu, but not Zn, to U. lactuca.  相似文献   

18.
Fluoroquinolones like difloxacin (DIF) and sarafloxacin (SARA) are adsorbed in soil and enter the aquatic environment wherein they are subjected to photolytic degradation. To evaluate the fate of DIF and SARA, their photolysis was performed in water under stimulated natural sunlight conditions. DIF primarily degrades to SARA. On prolonged photodegradation, seven photoproducts were elucidated by HR-LC-MS/MS, three of which were entirely novel. The residual anti-bacterial activities of DIF, SARA and their photoproducts were studied against a group of pathogenic strains. DIF and SARA revealed potency against both Gram-positive and -negative bacteria. The photoproducts also exhibited varying degrees of efficacies against the tested bacteria. Even without isolating the individual photoproducts, their impact on the aquatic environment could be assessed. Therefore, the present results call for prudence in estimating the fate of these compounds in water and in avoiding emergence of resistance in bacteria caused by the photoproducts of DIF and SARA.  相似文献   

19.
Ou X  Chen S  Quan X  Zhao H 《Chemosphere》2008,72(6):925-931
Relationship between the photoinductive activity and the properties of humic acids (HA) fractions were investigated with and without Fe(III). Three fractions were separated based on the molecular weight (M(w)) and were obtained following the order of M(w): F(A)>F(B)>F(C). Compared to F(A) and F(B), photodegradation of atrazine under simulated sunlight was much faster in solution containing F(C), whose structure was dominated by greater aromaticity, more oxygen groups and fluorophores. The interaction of HA fractions and Fe(III) was studied using fluorescence spectrometry and F(C) had the largest quenching constant. The capacity of electron transfer, estimated from the amount of photoformed Fe(II), was also highest for F(C). Thus, the Fe(III)-F(C) complex was efficient in phototransformation of atrazine in nearly neutral aqueous solutions. These results suggest that the aromaticity and oxygen groups content of HA exert great influence on the binding ability of metals and on the fate of pollutants in natural waters.  相似文献   

20.
Diuron (N'-[3,4-dichlorophenyl]-N,N-dimethylurea) is a herbicide belonging to the phenylurea family, widely used to destroy weeds on uncultivated surfaces. Because of its toxicity for aquatic organisms and suspicion of being carcinogenic for humans, diuron is the object of growing environmental concern. Therefore, we have developed the electro-Fenton method, an electrochemical advanced oxidation process (EAOP), to degrade diuron in aqueous medium, and we have studied the evolution of the toxicity of treated solution during the process. Indeed, the EAOPs catalytically generate hydroxyl radicals that oxidize the persistent organic pollutants, and can ultimately destroy and mineralize them. But, sometimes, relatively toxic organic metabolites are formed during the oxidation reaction. In this work, the evolution of toxicity of diuron aqueous solutions was studied at different initial concentrations, during treatment by the electro-Fenton method. Samples were collected at various electrolysis times and mineralization degrees during the treatment. The toxicity of the samples was measured using the bacteria Vibrio fischeri (Microtox) and the green alga Scenedesmus obliquus. Our results demonstrated that the toxicity of diuron aqueous solutions (concentrations=3.0-27.6 mg L(-1)) varied considerably with time. The formation and disappearance of several metabolites, having toxicity often stronger than that of the initial herbicide, were observed. To improve the efficiency of water decontamination, the electro-Fenton method should be applied during a time long enough (several hours) and at relatively high electrolysis current (I=250 mA) to reach a nearly complete mineralization of the herbicide in the aqueous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号