首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铬的毒性与其存在价态有关,六价铬的毒性比三价铬高100倍,是环境监测的重要项目之一。但混浊水样中六价铬的测定需用锌盐沉淀分离法后取滤液才能测定。 我们根据三价铬不干扰六价铬测定的原理,选择适当的还原剂,将混浊水样中六价铬还原为三价铬后加显色剂的溶液作为参比,测定了混浊水样中六价铬,浊度的影响能被参比溶液自动扣除。方法简单、实用,测定结果较为满意。1 实验方法1.1 仪器 722型分光光度计。1.2 试剂 还原剂:盐酸羟氨10%,碘化钾10%,抗坏血酸10%,亚硫酸钠10%;  相似文献   

2.
自来水或河水中铬(V1)的测定:量取自来水或河水50—200毫升于分液漏斗中,加入硫酸使酸度为0.5N(0.2—1N均可),2毫升0.5M的硫酸钠溶液,准确加入3%的N-235甲苯溶液5.0毫升,振荡1分钟,分层弃去水相。有机相加2N硫酸5毫升,0.3%的二苯偕肼溶液2毫升,以水稀至10毫升,涤荡显色2分钟,分层弃去水相。将有机相离心分离,转入1厘米吸收池中,于560nm处测量。电镀车间排放废水中铬的测定:取10—50毫升废水,调节酸度后按自来水或  相似文献   

3.
在NaNO3-NaHC(pH为6.2)缓冲介质中,加入DTPA(二乙烯三胺五乙酸钠,diethylenetriaminepentaacetate),铬于-1.10--1.20V,峰电流达到一个稳定的最大值。通过对电解质选择、仪器参数优化,建立脉冲伏安法测定海水中总铬(Total)、铬(Ⅵ)、铬(Ⅲ)的分析方法。铬(Ⅵ)最低检出质量浓度是0.10汕g/L,样品加标回收率在92%-102%,1.00μg/L标准溶液测定的相对标准偏差为3.26%。该方法具有选择性好、灵敏度高、准确、简便的特点,适用于海水、饮用水和清洁地表水中微量铬的测定。  相似文献   

4.
碱式氯化铝是一种新型的无机高分子混凝剂,广泛用于河水的净化、工业废水的处理等各个方面。为了检查碱式氯化铝的质量,必须分析其中有毒有害元素的含量,测定总铬的含量是一个常见的重要分析指标。目前总铬的测定一般都采用硝酸一硫酸前处理,然后在酸性条件下用高锰酸钾将三  相似文献   

5.
铬(Ⅵ)是确认的致癌物,因此,铬是水质分析中必测的重金属元素。为测定水和废水中的铬,国内外的分析工作者进行了深入的研究,关于水中微量铬的测定的报道也  相似文献   

6.
用脉冲极谱法及极谱溶出法测定铬已有报导,灵敏度可达ppb级。极谱法和脉冲极谱法测定铬(Ⅵ)一直沿用滴汞电极。前文我们研究了用旋转玻璃炭汞膜电极代替滴汞电极脉冲极谱法测定铬(Ⅵ)。在前文基础上,我们对测定底液浓度作了改变(底液为0.2M HCl,0.2M NaAc,5×10~(-4)M EDTA),成功地用旋转玻璃炭电极(无需加入汞离子形成汞膜)即能代替滴汞电极,铬(Ⅵ)电还原产生导数脉冲极谱波峰,峰电位-0.3伏(对Ag/AgCl.0.1M KCl溶液),波峰稳定清晰,重现性良好,峰高与铬(Ⅵ)  相似文献   

7.
建立了微波消解-电感耦合等离子体质谱(ICP-MS)法,同时测定大气PM2.5中K、Na、Ca、Mg、Fe、Al、Zn、Si、Ti、V、Cr、Mn、Co、Ni、Cu、As、Cd和Pb等18种金属元素的分析方法.样品用HNO3+H2O2(5∶1)经微波消解系统进行前处理.该方法操作方便,酸用量少,由于是密闭消解,对环境污染也少.经过反复调试,确定了仪器最佳操作条件.结果表明,各种元素标准曲线的线性相关系数均在0.9990以上,方法检出限在0.07 μg/L ~1.16 mg/L之间,精密度实验中各元素的RSD均小于7.53%,回收率在91.38%~117.53%之间.该方法能够快速有效地实现多元素同时测定,检测线性范围宽,测试结果准确可靠,可以应用于大气颗粒物中多种金属元素的测定.采用富集因子分析法对常州市大气中PM25做来源分析表明,常州市大气PM25中,大部元素的富集因子都大于10,其中,Ni、Cu、Zn、As、Cd、Co和Pb在各个采样点的富集因子都非常高,表明主要来自于人为污染.  相似文献   

8.
动力学光度法测定痕量铬的研究   总被引:1,自引:0,他引:1  
本文叙述在HAc—NaAc介质中痕量Cr(Ⅵ)对H_2O_2氧化苯酚红的反应有强烈的催化作用,催化反应的表观活化能比非催化反应的表观活化能下降23.9%。据此建立的动力学光度法测定痕量铬的新方法,选择性高,重视性好,检测限为1.7×10~(-8)g/ml,测定范围为1~8μg/25ml。用此法分析经阳离子树脂交换后的水样取得满意的结果。  相似文献   

9.
近年来,国外已有关于溶剂萃取法处理含铬(Ⅵ)废水的报导,如用磷酸三丁酯(TBP)萃取含铬(Ⅵ)废水,铬(Ⅵ)的回收率很高(99.5%),反萃液中铬盐浓度可达200克/升,此法已在工业上获得应用。国内也有人用 TBP作过这方面的研究。还有人用胺类萃取剂萃取含铬(Ⅵ)溶液。另有多篇文献报导了有关铬(Ⅵ)的萃取,其主要目的是用于铬(Ⅵ)的萃取分析。 本文对各种常用的国产萃取剂:磷酸三丁酯(TBP)、三辛基氧化磷(TOPO)、二甲庚基乙酰胺(N_(503)、甲基异丁基酮  相似文献   

10.
研究了在HAC-NaAC介质中,痕量铬(VI)催化过氧化氢氧化罗丹明6G的褪色反应及其动力学条件,建立了催化荧光测定痕量铬(VI)的新方法。催化反应在沸水浴中进行15min,为假零级反应。方法的检出限为2.1×10-9g/mL,线性范围为0.2~2.5μg/25mL。将该法用于环境水样中痕量铬(VI)的测定,结果良好。  相似文献   

11.
在现有的微量砷和硫化物的测定方法中,还未见到有砷和硫化物联合测定的报导。本文提出利用氢化物发生的方法,使水样中的砷和硫化物分别以AsH_3和H_2S形式逸出,用氢气带入氢氧化钠吸收液定量吸收S~=,AgDDC-三乙胺氯仿吸收砷,然后用荧光素汞测定硫的快速联合测定方法。研究了氢化物发生的酸度、吸收时间、干扰元素的影  相似文献   

12.
在环境质量评价中,不仅要测定土壤中的痕量元素,而且常要测定其次要元素。钛是一种抗风化元素,在地球化学和土壤学中可作为指示元素。因此需要建立土壤中次要元素的简便快速的分析方法。各种经典方法和原子吸收法,样品要经过较长时间的化学预处理。近来,X射线萤光光谱法测定岩石、耐火材料中的铁、钛、钙等元素时采用内标法,离子交换溶解法,和熔融浇铸法,但是制样比较复杂。本文报导用硼酸直接稀释压片,测定土壤中的铁、钛和钙,制样简单,方法快速,适用于常规分析。  相似文献   

13.
本工作提出用铜试剂(DDTC)和1-(2-吡啶偶氮)-2萘酚(PAN)作混合螯合剂可有效地螯合水中九种痕量金属离子用(MIBK)甲基异丁酮萃取后喷雾有机相连续测定九种水中元素,对DDTC-MIBK,PAN-MIBK,DDTC—PAN—MIBK的萃取pH影响进行了研究,找到了共同萃取的pH范围为3~4,这比用单一种螯合剂要优越,对萃取剂用量、萃取温度、干扰离子、测定条件等均进行了考察,制定了一个测定水中痕量Cu、Fe、Pb、Zn、Cd、Cr、Co、Ni、Mn的简便、快速的方法。可测定水中低至ppb数量级的痕量元素,变异系数大多数为10%,加标回收率在90~107%之间,并用于河水、泉水、饮水、长江水、湖水的测定,均取得了满意的结果。  相似文献   

14.
利用铬在污水中存在的形式不同,三价铬以阳离子Cr~( 3)形式存在,而六价铬以阴离子Cr_4~(-2)和Cr_2 O_7~2的形式存在,可分别采用阳离子交换树脂进行交换分离。将污水经强酸型阳离子交换树脂动态交换分离Cr~( 3)后在溶液中测定Cr~( 6)。用强碱型阴离子交换树脂静态交换分离Cr~( 6)后在溶液中测定Cr~( 3)。用二苯碳酰二肼为显色剂,Cr~( 6)在酸性条件下可直接  相似文献   

15.
关于水稻、玉米、马铃薯、西红柿等对铬的吸收、运转已有报导,而小白菜、苋菜对铬的吸收、运转尚未见报导。本文应用放射性~(51)Cr研究小白菜、苋菜对添加于土壤中~(51)Cr的吸收和运转,并观察添加于土壤中的铬对其生长发育的影响。  相似文献   

16.
铬渣的热解无害化处理   总被引:1,自引:0,他引:1  
采用热解工艺无害化处理铬渣,探讨了稻秆在铬渣无害化处理中的作用.研究了热解温度、稻秆与铬渣质量比、铬渣粒径及保温时间对铬渣热解无害化处理的影响,并分析了热解前后热解产物中铬元素形态的变化.结果表明,热解工艺能有效地将铬渣中Cr(Ⅵ)还原,稻秆热解过程中产生的气相挥发分对Cr(Ⅵ)的还原起核心作用.较为适宜的热解条件:热解温度为400 ℃,稻秆与铬渣质量比为0.10,铬渣粒径<2 000 μm,保温时间为10 min.在该热解条件处理下,热解产物中的Cr(Ⅵ)质量浓度为121 mg/kg,低于热解前铬渣中的Cr(Ⅵ)(3 400 mg/kg).热解后,可交换态及碳酸盐结合态铬含量降低,大部分铬转化成了稳定的有机结合态和残渣态,极大地降低了铬渣的危害.第一作者:张大磊,男,1982生,博士研究生,研究方向为固体废弃物热处理.  相似文献   

17.
钒是土壤中微量有毒元素。钒的测定国内外都用PAR、N苯甲酰苯胲、二甲酚橙、二苯胺磺酸钠作显色剂。干扰元素的分离多用萃取法,方法不够简捷。用于土壤中微量钒测定的报导极少。我们在反复试验中提出在氯化十六烷基吡啶(CPC)存在下,用邻苯二酚紫(PV)作显色剂测定钒的新方法。PH=6时,三元络合物呈紫色,虽然光谱未发生红移现象,但有意义的是试剂的吸收由660毫微米移到600毫微米,提高了对比性,  相似文献   

18.
Cr(Ⅵ)污染土壤的热解还原无害化处理   总被引:4,自引:2,他引:2  
提出了用热解还原法对含铬土壤进行无害化处理的新技术,研究了热解温度、热解时间及土壤有机质对铬无害化处理的影响,分析了热解前后土壤中铬的元素形态的变化.同时还探讨了热解还原过程中Cr(Ⅵ)的无害化机制.结果表明,土壤中的有机质在热解还原过程中产生的挥发分对Cr(Ⅵ)的无害化起核心作用;在200~600℃范围内,Cr(Ⅵ)的还原量随着热解温度升高而增大,500.0℃最适合于经济有效地实现Cr(Ⅵ)的热解还原处理;Cr(Ⅵ)的热解还原过程较快.铬的形态分析结果表明,热解后可交换态和碳酸盐结合态铬量大大降低,大部分铬转化成了活性低的残渣态,极大地降低了铬的危害.  相似文献   

19.
一、前言 铬存在于电镀、冶炼、制革、纺织、制药等工业废水污染的水体中.天然水中也常含有微量的铬.在环境监测分析方法中,通常推荐用二苯卡巴肼比色法测定六价铬.为了测定天然水中浓度更低的Cr(Ⅵ)含量,就要采用离子交换、液一液萃取或共沉淀法进行富集.但这些方法费时较长或操作麻烦.1981年,青山卫等人以溴化十六烷基三甲基铵为发泡剂,对泡沫浮选分光光度法测定Cr(Ⅵ)进行了研究。此法可测出3μg/ι的Cr(Ⅵ),但较大量硫酸根存在时有干扰,而天然水中一般都含有SO_4~(2-)离子.后来他们又改用十二烷基磺酸钠为发泡剂,  相似文献   

20.
生物质铬渣共热解工艺是新型的铬渣处理工艺,该工艺能有效地将铬渣中的Cr(Ⅵ)还原为Cr(Ⅲ).而由于共热解产物总铬含量较高,因此考察了铬渣与秸秆共热解过程中铬稳定性.通过考察共热解产物成分及形态分析、pH影响实验、淋洗实验及长期稳定性实验,对共热解铬渣的铬环境安全性进行评估.结果表明:(1)共热解温度对铬渣形态有较大影响,可交换态及碳酸盐结合态铬含量随共热解温度升高而逐渐降低,800℃时候可交换态铬降至<0.1%(质量分数,下同),碳酸盐结合态铬为1.2%;共热解后最稳定的残渣态铬含量随共热解温度升高而逐渐升高.(2)当pH>7时,两种共热解产物总铬溶出量极低,基本都小于6mg/kg;当pH≤7时,总铬的溶出量显著增加,最高超过500 mg/kg.但由于解毒铬渣的酸中和能力极强,因此铬释放风险较低.(3)共热解产物的总铬累积溶出量极低,根据拟合结果计算出其100年填埋时间的总铬溶出量不超过1.3 mg/kg.长期稳定性实验表明,自然堆置过程中共热解产物的Cr(Ⅵ)含量逐渐降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号