首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
从污水处理厂的活性污泥中,分离、筛选出1株高效降解丙烯酰胺的菌株A18,经16S rDNA序列分析鉴定该菌株属于Delftia tsuruhatensis,它可以降解苯胺.以丙烯酰胺为惟一碳源的无机盐培养基中,以菌株细胞的增长和丙烯酰胺的降解为依据,通过实验得出A18菌株的最适生长条件:温度为30℃,pH为7.0.在最适生长条件下,当丙烯酰胺的初始浓度约为1 000 mg/L时,菌株A18对丙烯酰胺的48 h降解率达到100%.  相似文献   

2.
以N,N-二甲基甲酰胺(DMF)作为唯一碳、氮源,从高盐环境中筛选耐盐DMF高效降解菌DMF-4,并对其降解DMF的特性进行研究。经鉴定,DMF-4为环太芽孢杆菌(Bacillus circulans),其在盐度为3%,温度为30℃的条件下培养48 h,对1 000 mg/L DMF的降解率可达47.7%。DMF-4降解DMF的适宜条件为初始pH 6.0~7.0,DMF初始质量浓度3 000~4 000 mg/L,温度30~40℃,盐度1%~3%;葡萄糖和醋酸钠可明显促进菌株DMF-4的生长和对DMF的降解效果。菌株DMF-4对高盐与高温皆有较好的耐受性,在工业污水处理领域具有广阔的应用空间。  相似文献   

3.
甲醛降解菌的筛选及降解特性研究   总被引:3,自引:0,他引:3  
从采集活性污泥中筛选得到1株具有高效降解甲醛能力的菌株并命名为JQ-1,根据其形态特征,初步判断菌株JQ-1属假单胞菌属。同时对菌株JQ-1的生长特性及降解特性进行了初步研究。实验结果表明,该菌株降解甲醛的最适条件为:甲醛废水浓度为50mg/L,pH值为6,培养温度为25℃,摇床转速为150r/min。在最适条件下,菌株JQ-1具有较强的降解甲醛能力,当甲醛废水浓度为50mg/L时,在24h内甲醛降解率可达87%以上。  相似文献   

4.
两相厌氧流化床中优势菌种降解硝基苯废水的特性   总被引:4,自引:4,他引:0  
构建了从强化传质与优势菌相结合的两相厌氧流化床生物降解体系,考察了水力停留时间(HRT)与上流速度2种水力特征以及共基质、pH、进水浓度等主要过程因素对优势菌种降解硝基苯的影响.结果显示,反应器在HRT为36h、上流速度为4 m/h时获得较好的处理效果;菌种需要pH 7.5的条件下以葡萄糖为共基质降解硝基苯,且两者的最佳质量比约为6;当进水硝基苯浓度为50~345 mg/L时,对硝基苯平均降解率和降解速率分别达到91.1%和120.9 mg/(L·d),且可耐受2.5倍以内的浓度负荷冲击.由此表明良好的反应器水力条件及优势菌种的结合可使高毒性的硝基苯在厌氧条件下有效地降解.  相似文献   

5.
类产碱假单胞菌(Pseudomonas pseudoalcaligenes)JS45能以硝基苯作为唯一碳源、氮源和能源生长。在本研究中,设置了硝基苯起始浓度分别为50、100、150、200、250和300 mg·L~(-1)。结果表明:菌株JS45虽然在降解高浓度硝基苯过程中出现迟滞现象,但仍可完全降解。盐度能抑制硝基苯的降解。JS45在温度30℃、pH 7.0~9.0时降解效果较好。硝基苯降解动力学符合修饰Gompertz模型,当硝基苯浓度升高时,模型参数迟滞时间(λ)逐渐增加,最大降解速率(Rm)先增大后减小;当硝基苯浓度为214.61 mg·L~(-1)时,λ和Rm分别为57.0 mg·(L·h)-1和4.31 h。  相似文献   

6.
低温喹啉降解菌的筛选及降解性能   总被引:2,自引:0,他引:2  
从吉林石化污水处理厂的活性污泥中驯化、筛选获得一株降解效率高且生长速率快高效耐冷菌,命名为WS-5.该菌能以喹啉作为惟一的碳源、氮源及能源.结合菌体的形态观察、生理生化特性实验及16S rDNA序列同源性对比分析,鉴定菌株WS-5为恶臭假单胞菌(Pseudomonas putida).不同降解条件下的实验结果表明,菌株WS-5的最佳降解条件是投菌量为15%,pH值范围在8~10,摇床转速为100 r/min.最佳降解环境下对200 mg/L的喹啉在132 h降解率达到了85.3%.菌株WS-5对初始喹啉浓度为50、100、200和300 mg/L的初始喹啉浓度分别在36、72、192和262 h内完全降解.这将为今后在低温条件下处理含喹啉废水提供技术指导.  相似文献   

7.
一株耐盐柴油降解菌的分离鉴定及其降解性能   总被引:2,自引:0,他引:2  
从某油田附近受石油污染土壤中分离出一株以柴油为惟一碳源的耐盐菌株LS1。通过对菌株的生理生化特性、菌体的形态观察及16S r DNA基因序列分析鉴定菌株LS1为假单胞菌属(pseudomonas)。该菌株可耐受的最高盐度(Na Cl)和柴油浓度分别为6%~8%和12 000 mg/L。菌株生长的适宜p H和温度条件分别为6.0~8.0和28~36℃。在盐度为6%、p H为7.0、温度为32℃、菌种投加量为10%的条件下,初始浓度为3 000 mg/L的柴油经6 d降解后,去除率可达78.3%,加入适量外加碳源葡萄糖和蔗糖,可使降解率分别提高至92%和90%左右。菌株LS1的耐盐机理可能是通过在细胞内积累甜菜碱以调节菌株细胞内外渗透压平衡。投加甜菜碱可提高耐盐菌LS1在高盐环境下对柴油的降解效率。  相似文献   

8.
一株对硝基苯酚降解菌的筛选鉴定及其降解特性   总被引:1,自引:0,他引:1  
从受甲基对硫磷污染的土壤中分离筛选得到一株能够以对硝基苯酚(PNP)作为唯一碳源、氮源生长的菌株,命名为TM.经16S rDNA序列分析初步鉴定该菌株为节杆菌(Arthrobacter).考察了该菌株在PNP浓度、盐度(NaCl)、pH、外加碳源(葡萄糖)、外加氮源等因素下对PNP降解特性的影响.结果表明:该菌株对PNP的最大耐受质量浓度为300 mg/L,并在降解的过程中生成NO2-该菌株的耐盐能力可达0.30%(质量分数),其最佳pH为8.在此pH下,200 mg/L的PNP在16h时即可被完全降解,添加0.30%(质量分数)的葡萄糖可使生物量和降解速率达到最大,牛肉膏作为外加氮源最有利于该菌株对PNP的降解.  相似文献   

9.
以从我国最大的石油污水灌区之一——沈抚灌区污染土壤分离到的以芘为惟一碳源、能源生长的高效降解菌株ZQ5为实验材料,通过对菌株ZQ5培养条件的优化,以及采用摇瓶振荡培养方法测定菌株ZQ5对不同浓度芘的降解率,表明:菌株ZQ5在30℃振荡培养16 d后对150 mg/L芘的降解率为90.31%。通过模拟稻田施用N、P和K肥等的土壤环境,探索了无机营养元素对降解菌ZQ5降解能力的影响,发现土壤中混合加入N、P和K无机营养元素的降解率能达到82%以上,比单加某种营养元素对降解菌ZQ5的降解效果好。本研究结果可以指导稻田PAHs的原位生物修复。  相似文献   

10.
以从我国最大的石油污水灌区之一——沈抚灌区污染土壤分离到的以芘为惟一碳源、能源生长的高效降解菌株ZQ5为实验材料,通过对菌株ZQ5培养条件的优化,以及采用摇瓶振荡培养方法测定菌株ZQ5对不同浓度芘的降解率,表明:菌株ZQ5在30℃振荡培养16 d后对150 mg/L芘的降解率为90.31%。通过模拟稻田施用N、P和K肥等的土壤环境,探索了无机营养元素对降解菌ZQ5降解能力的影响,发现土壤中混合加入N、P和K无机营养元素的降解率能达到82%以上,比单加某种营养元素对降解菌ZQ5的降解效果好。本研究结果可以指导稻田PAHs的原位生物修复。  相似文献   

11.
分别从台州和衢州某化工厂的好氧池中分离筛选得到2株苯胺降解菌TZl和JH1,经16SrDNA测序鉴定为Comamonassp.TZ1和Pseudomonassp.JH1,均具有较强的苯胺降解能力,培养24h后,可使初始浓度为800mg/L的苯胺去除率达到96.4%~98.4%。在此基础上,按体积比l:1将2株菌液进行混合构建了混合菌体系,进而对比考察了苯胺初始浓度、pH、盐度和重金属等环境因子对单一菌和混合菌生长量及降解苯胺效果的影响,重点探讨混合菌对不适宜生长环境的适应性及其对苯胺的降解特性。通过单一菌和混合菌对比实验发现,在适宜苯胺初始浓度、pH和盐度条件下,混合菌的生长量略高于单一菌;在不适宜生长的高浓度苯胺、pH和盐度条件下,混合菌也表现出了更强的适应性和苯胺矿化能力。Zn2+和Cr6+耐受实验则表明,对于Cr6+混合菌表现出了更强的耐受能力,而对于zn2+并没有表现出更强的耐受能力。  相似文献   

12.
分别从台州和衢州某化工厂的好氧池中分离筛选得到2株苯胺降解菌TZ1和JH1,经16S rDNA测序鉴定为Comamonas sp.TZ1和Pseudomonas sp.JH1,均具有较强的苯胺降解能力,培养24 h后,可使初始浓度为800 mg/L的苯胺去除率达到96.4%~98.4%。在此基础上,按体积比1∶1将2株菌液进行混合构建了混合菌体系,进而对比考察了苯胺初始浓度、pH、盐度和重金属等环境因子对单一菌和混合菌生长量及降解苯胺效果的影响,重点探讨混合菌对不适宜生长环境的适应性及其对苯胺的降解特性。通过单一菌和混合菌对比实验发现,在适宜苯胺初始浓度、pH和盐度条件下,混合菌的生长量略高于单一菌;在不适宜生长的高浓度苯胺、pH和盐度条件下,混合菌也表现出了更强的适应性和苯胺矿化能力。Zn2+和Cr6+耐受实验则表明,对于Cr6+,混合菌表现出了更强的耐受能力,而对于Zn2+并没有表现出更强的耐受能力。  相似文献   

13.
油污土中降解柴油细菌的分离鉴定及降解能力研究   总被引:1,自引:0,他引:1  
从所采集柴油污染土壤样品中富集、分离得到柴油降解优势菌株,命名为B-3和B-4.根据其生理生化性质及16S rDNA序列比对分析,确定2株菌分别属于Tetrathiobacter kashmirensis、假单胞菌属(Pseudomonas sp.).由于实验中,B-3的生长曲线较特殊,故以B-3和典型石油烃降解菌假单...  相似文献   

14.
从长期施用阿特拉津的寒地黑土耕层(0~10cm)土壤中筛选到一株能以除草剂阿特拉津为氮源生长的降解菌株,结合16SrRNA序列分析结果,将该菌株命名为Arthrobacter sp.DNSl0。在接种量为10。CFU/mL的条件下,菌株DNSl0在24h内对100mg/L阿特拉津的降解率为99.41%。单因子实验结果表明,菌株DNSl0适宜生长和降解的条件范围是:温度25~35'12,pH值5.0~8.0,培养液盐度0.1%~2%,对阿特拉津最大耐受浓度可达1200mg/L。正交实验法进一步表明,该菌株保持较好生长及降解能力的最优方案是温度30℃,pH值7.5,培养液盐度0.5%。影响其降解能力的环境因素的主次顺序依次是:温度〉盐度〉pH值。  相似文献   

15.
硝基苯类化合物生物降解菌的筛选及性能研究,是制药、染料等行业废水达标的重要基础。以浓度梯度升高法筛选到一株硝基苯厌氧降解菌Klebsiella oxytoca NBA-1。考察了该菌对氧气的需求,以及在厌氧条件下,温度、pH值、外加葡萄糖及硝基苯初始浓度等环境因子对菌株降解硝基苯能力的影响,并进一步讨论菌株对氯取代硝基苯类化合物的降解情况。结果表明,该菌在厌氧条件下生长比好氧条件下慢,但降解速度更快;厌氧降解硝基苯的最佳pH值和温度和分别为8.3和30~35℃;加入0.3%~0.5%的葡萄糖可促进降解,且对300mg/L以下的硝基苯均有降解能力;该菌能将4-氯硝基苯转化为4-氯苯胺,并进一步脱氯为苯胺。研究结果可为硝基苯及含氯硝基苯的处理工艺选择提供相关的参考依据。  相似文献   

16.
以硝基苯、苯胺为主要污染物的污染地下水为研究对象,加入激活剂(乳糖、Na2HPO4、乳糖+Na2HPO4、乙醇、牛肉膏、蛋白胨)激活土著微生物,并考察其对土著微生物生长及硝基苯、苯胺降解效果的影响。加入激活剂3d后测各个水样的脱氢酶活性,对培养9d后的水样进行气相色谱/质谱(GC/MS)分析。结果表明,加入乳糖的水样中,其微生物相对增长率达157.2%,硝基苯、苯胺的相对去除率分别为14.90%和0.79%;加入Na2HPO4和乙醇的水样中,其微生物增长和硝基苯、苯胺降解情况均没有明显变化;加入乳糖+Na2HPO4的水样中,微生物相对增长率达180.3%,硝基苯、苯胺的相对去除率分别为24.20%和1.21%;加入牛肉膏的水样中,微生物的相对增长率为830.7%,硝基苯、苯胺的相对去除率分别为99.99%和99.67%;加入蛋白胨的水样中,其微生物相对增长率为686.0%,硝基苯、苯胺的相对去除率分别为99.33%和58.94%。GC/MS分析结果表明,加入激活剂后对氯苯胺、1-甲基-4-硝基苯等其他有机物的降解率均有提高。由此可见,通过激活土著微生物修复有机物污染地下水是可行的。  相似文献   

17.
高效降解菌的筛选对利用生物修复技术有效去除环境中的多环芳烃具有重要意义。分别以石油污染土壤和焦化废水活性污泥为菌源,分离出芘降解菌和混合PAHs(菲、荧蒽和芘)降解菌共14株并对其降解性能进行对比研究。结果表明,筛选得到的菌株分别属于9个菌属,其中2种菌源共有的菌属为Mycobacterium sp.、Ralstonia sp.和Shinella sp.。芘和PAHs的高效降解菌(CP16和CM32)均属于分支杆菌属(Mycobacterium),来源于焦化废水活性污泥;菌株CP16对芘(50mg/L)的7 d降解率为74.99%,CM32对PAHs(菲50 mg/L、荧蒽和芘各10 mg/L)的7 d降解率为100%。因此,以焦化废水活性污泥为菌源更有利于获得高效的多环芳烃降解菌。  相似文献   

18.
周作明  周琪 《环境工程学报》2012,6(10):3662-3666
考察了NaCl、AlCl3、Na2SiO3、CuSO44种均相催化剂对超声波(US)/铁炭微电解(FCME)协同体系降解硝基苯的催化效果,结果表明,CuSO4的催化效果最好,在体系反应液初始pH为3.0,混合填料投加量为5.0 g/L(铁炭质量比为1∶1),CuSO4投加量为800 mg/L时,体系对硝基苯的降解率达到99.2%,但溶液COD值仅下降了24.6%,矿化效果一般,红外光谱分析表明降解体系的主要中间产物为苯胺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号