首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Valuable chemicals can be separated from agricultural residues by chemical or thermochemical processes. The application of pyrolysis has already been demonstrated as an efficient means to produce a liquid with a high concentration of desired product. The objective of this study was to apply an insect and microorganism bioassay-guided approach to separate and isolate pesticidal compounds from bio-oil produced through biomass pyrolysis. Tobacco leaf (Nicotianata bacum), tomato plant (Solanum lycopersicum), and spent coffee (Coffea arabica) grounds were pyrolyzed at 10°C/min from ambient to 565°C using the mechanically fluidized reactor (MFR). With one-dimensional (1D) MFR pyrolysis, the composition of the product vapors varied as the reactor temperature was raised allowing for the selection of the temperature range that corresponds to vapors with a high concentration of pesticidal properties. Further product separation was performed in a fractional condensation train, or 2D MFR pyrolysis, thus allowing for the separation of vapor components according to their condensation temperature. The 300–400°C tobacco and tomato bio-oil cuts from the 1D MFR showed the highest insecticidal and anti-microbial activity compared to the other bio-oil cuts. The 300–350 and 350–400°C bio-oil cuts produced by 2D MFR had the highest insecticidal activity when the bio-oil was collected from the 210°C condenser. The tobacco and tomato bio-oil had similar insecticidal activity (LC50 of 2.1 and 2.2 mg/mL) when the bio-oil was collected in the 210°C condenser from the 300–350°C reactor temperature gases. The 2D MFR does concentrate the pesticidal products compared to the 1D MFR and thus can reduce the need for further separation steps such as solvent extraction.  相似文献   

2.
This study characterized organic compounds found in New York State manufactured gas plant (MGP) coal tar vapors using controlled laboratory experiments from four separate MGP sites. In addition, a limited number of deep (0.3–1.2 m above coal tar) and shallow (1.2–2.4 m above coal tar) soil vapor samples were collected above the in situ coal tar source at three of these sites. A total of 29 compounds were consistently detected in the laboratory-generated coal tar vapors at 50°C, whereas 24 compounds were detected at 10°C. The compounds detected in the field sample results were inconsistent with the compounds found in the laboratory-generated samples. Concentrations of compounds in the shallow soil vapor sample were either non-detectable or substantially lower than those found in deeper samples, suggesting attenuation in the vadose zone. Laboratory-generated data at 50°C compared the (% non-aromatic)/(% aromatic) ratio and indicated that this ratio may provide good discrimination between coal tar vapor and common petroleum distillates.  相似文献   

3.
Adsorption and desorption properties of the dust accumulated on air filters were examined by using a small-scale test apparatus with model compounds. The dust samples were loaded with the model compounds either by adsorption from a constant concentration in air flow or by direct injection into the dust. Desorption was measured at three different relative humidities of air (4–5%, 40–50%, 70–80%). Results indicated that constant relative humidity (RH) of air did not affect the rate of desorption in the test conditions. However, an increase in humidity substantially increased desorption of the model compounds. Similar results were obtained when experiments were conducted using dirty filters without added model compounds. In addition, emission products from clean and dusty filter materials were analyzed at two temperatures (50°C and 100°C) by using an automatic thermodesorption device. The main compounds released were carboxylic acids, aldehydes and terpenes. The emission profiles were similar for the pre-filters and main filters, but the emissions were higher from pre-filters than from the main filters. This result is consistent with the earlier findings of higher odor emissions from pre-filters.  相似文献   

4.
A simple, inexpensive, and accurate technique for evaluating or auditing the sampling, recovery, and analytical phases of EPA Source Reference Method 25 has been developed. The technique involves spiking a U-shaped stainless steel cartridge containing Tenax® with known quantities of selected organic compounds and thermally desorbing them at temperatures from 160°C to 180°C to generate organic vapors quantitatively. The major advantages of this technique are that no other measurement methods can be used to determine the generated organic concentrations in lieu of Method 25; and that the cartridge can easily be taken to the field for evaluation. The organic compounds generated in test runs are collected and analyzed using the Method 25 procedure. The generation of organics is quantitative and recoveries were found to be 100 ± 10%. The time required for desorption of the majority of organics is generally less than forty-five minutes at a flow rate of 100 mL/min; however, based on laboratory experience the recommended sampling time is sixty minutes. These spiked cartridges are stable at room temperature over a two-month period. Results of interlaboratory studies showed close agreement with the expected concentrations based on calculations from the mass loadings and sample volumes.  相似文献   

5.
G.A. Eiceman  H.O. Rghei 《Chemosphere》1984,13(9):1025-1032
Treatment of tetrachlorodibenzo-p-dioxin (T4CDD) on municipal incinerator fly ash at 30 to 150°C for 10 minutes using 5% (Vol/Vol) NO2 in air resulted in production of nitro-T4CDD. Percent conversion was between 40% at 50°C to 100% at 150°C. Nitro-T4CDD produced in the laboratory was unstable in hexane/methanol or hexane/acetone solutions and decomposed at ?5°C with half-lives of 8–10 days?1 to the original T4CDD.Fly ash from a municipal incinerator in Toronto, Ontario was extracted using toluene/methanol for 12 hrs in a Soxhlet extractor. Condensate of this extract was analyzed using capillary gas chromatography with flame ionization, nitrogen-selective, and mass spectrometric detectors. Retention times for nitro-T4CDD, multi-ion selected ion monitoring, and nitrogen detector response were used as supporting evidence for the presence of nitro-chlorinated dioxins as naturally occurring in this sample.  相似文献   

6.
An investigation of high volume particle sampling and sample handling procedures was undertaken to evaluate variations of protocols being used by the U.S. Environmental Protection Agency. These protocols are used in urban ambient air studies which collect ambient and source samples for subsequent mutagenicity analysis of the organic extracts of the aerosol fraction. Specific protocol issues investigated include: (a) duration of sampling period, (b) type of filter media used to collect air particles, (c) necessity for cryogenic field site storage and dry ice shipping of filter samples, and (d) sample handling at the receiving laboratory. Six PM10 Hi-Vol samplers were collocated at an urban site in downtown Durham, North Carolina and operated simultaneously to evaluate 12 h versus 24 h collection periods and filter media choices of glass fiber, Teflon® impregnated glass fiber (TIGF), and quartz fiber. Filters from the samplers plus field blanks were collected during each of 25 sampling periods. TIGF filters from two samplers were immediately placed on dry ice in the field and transported directly to cryogenic storage. TIGF, quartz, and glass fiber filters from three samplers were transported at ambient and maintained at room temperature for three to six days prior to cryogenic storage. One TIGF sample, which was collected on a previously tared filter, was subjected to controlled environment equilibration (40 percent relative humidity, 22°C) for 8 to 24 h and weighed prior to cryogenic storage. All filters were subsequently stored at ?70°C to ?80°C prior to a one-time extraction and Salmonella (Ames) mutagenicity bioassay of the entire sample set. Results indicate that the sample handling variations and collection period variables had no significant effect on recovery of organics or mutagens. However, a filter type difference was observed. The sonication extraction of organics and mutagens was significantly greater for TIGF filters than for glass fiber or quartz. Results from a second phase of study indicated differences in extracted organics and mutagens for these filter types.  相似文献   

7.
Background, Aims and Scope Polycyclic Aromatic Hydrocarbons (PAHs) are known for their adverse and cumulative effects at low concentration. In particular, the PAHs accumulate in sewage sludge during wastewater treatment, and may thereafter contaminate agricultural soils by spreading sludge on land. Therefore, sludge treatment processes constitute the unique opportunity of PAH removal before their release in the environment. In this study, the ability of aerobic microorganisms to degrade light and heavy PAHs was investigated in continuous bioreactors treating trace-level PAH-contaminated sludge. Methods Several aerobic reactors were operated under continuous and perfectly mixed conditions to simulate actual aerobic sludge digesters. Three sterile control reactors were performed at 35°C, 45°C or 55°C to assess PAH abiotic losses under mesophilic and thermophilic conditions. Three biological reactors were also operated at 35°C, 45°C or 55°C. Furthermore, 250 mM methanol were added in an additional mesophilic reactor (35°C). All reactors were fed with long-term PAH-contaminated sewage sludge, and PAH removal was assessed by inlet/outlet mass balance. In this study, PAH compounds ranged from 2 to 5-unsubstituted aromatic rings, i.e. respectively from Fluorene to Indeno(123cd)pyrene. Results and Discussion Significant abiotic losses were observed for the lightest PAHs (fluorene, phenanthrene and anthracene), while biodegradation occurred for all PAHs. More than 80% of the lightest PAHs were removed. Biodegradation rates inversely correlated with the increasing molecular weight, and seemed limited by the low bioavailability of the heaviest PAHs (only 50% of removal). The enhancement of PAH bioavailability by increasing the process temperature or adding methanol was tested. A temperature increase from 35°C to 45°C and then to 55°C significantly enhanced the biodegradation of the heaviest PAHs from 50% to 80%. However, high abiotic losses were observed for all PAHs at 55°C, which was attributed to volatilization. Optimal conditions were found at 45°C considering the low abiotic losses and the high PAH biodegradation rates. Similar performances were achieved by addition of methanol in the sludge. It was concluded that increasing temperatures or addition of methanol favored PAH diffusion from solids to an aqueous compartment, and enhanced their bioavailability to PAH-degrading microorganisms. Conclusion In this study, the use of long-term acclimated aerobic ecosystems showed the high potential of aerobic microorganisms to degrade a wide range of PAHs at trace levels. However, PAH biodegradation was likely controlled by their low bioavailability. Two aerobic processes have been finally proposed to achieve efficient decontamination of sewage sludge, at 45°C or in the presence of methanol. The PAH concentrations in reactor outlet were lower than the French requirements, and allow the treated sludge to be spread on agricultural land. Recommendations and Outlook The two proposed aerobic processes used physical or chemical diffusing agents. The global ecological impact of using the latter agents for treating trace level contamination must be considered. Since methanol was completely removed during the process, no additional harm is expected after treatment. However, an increase of temperature to 45°C could drastically increase the energy demand in full-scale plants, and therefore the ecological impact of the process. Moreover, since bioavailability controls PAH biodegradation, efficiency of the processes could also be influenced by the hydraulic parameters, such as mixing and aeration rates. Further experimentations in a pilot scale are therefore recommended, as well as a final assessment of the global environmental benefit of using such aerobic processes in the bioremediation of trace level compounds. - Abbreviations (PAHs): Ant – anthracene; B(a)A – benzo(a)anthracene ; B(b)F – benzo(b)fluoranthene; B(k)F – benzo(k)fluoranthene; B(ghi)P – benzo(g,h,i)perylene; B(a)P – benzo(a)pyrene; Chrys – chrysene; DB – dibenzo(a,h)anthracene; Fluor – fluoranthene; Fluo - fluorene; Ind – indeno(1,2,3-c,d)pyrene; Phe - phenanthrene; Pyr – pyrene - * The basis of this peer-reviewed paper is a presentation at the 9th FECS Conference on 'Chemistry and Environment', 29 August to 1 September 2004, Bordeaux, France.  相似文献   

8.
Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT?g?1. The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.  相似文献   

9.
ABSTRACT

Thermophilic biodégradation of toluene with active compost biofilters was studied. Thermophilic conditions were maintained either by daily substrate addition (semicontinuous composting) or with a heating system (batch thermophilic composting). The semicontinuous system was designed for the treatment of cool (less than approximately 35 °C) gases under thermophilic conditions, while the extended batch approach was developed for the treatment of warmer gases. When the semicontinuous system was operated at 50 °C (after a one-day start-up period) at an average inlet concentration of 5.5 g m-3, toluene was degraded at a rate ranging from 73 to 110 g C m-3 hr-1. Batch thermophilic treatment was somewhat less effective at the same inlet concentration. Semicontinuous toluene biofiltration at 60 °C was also investigated, but biodegradation rates were significantly lower than at 50 °C. In all systems, toluene biodegradation was proportional to the inlet concentration. Rates of up to 289 g C m-3 hr-1 (at an inlet concentration of 14.7 g m-3) were achieved for semicontinuous and batch operation and 251 g C m-3 hr-1 (at an inlet concentration of 18.4 g m-3) for batch thermophilic at 50 °C. Semicontinuous thermophilic operation at 60 °C showed a maximum rate of 119 g C m-3 hr-1. Active compost ther-mophilic biofiltration was found to be very effective when concentrations are high. At lower concentrations, rates were similar to those obtained with mesophilic biofiltration. Mixing, humidity, and the presence of cosubstrate were important parameters in maintaining high degradation rates. Biofiltration in the batch thermophilic mode could be useful when conventional biofiltration is ineffective due to elevated gas temperatures. Biofiltration in the semicontinuous thermophilic could reduce the biofilter size necessary for treatment of cooler gases containing high concentrations of volatile organic compounds.  相似文献   

10.
The equilibrium partitioning of formaldehyde (HCHO) between air and snow was studied in a series of laboratory experiments conducted at −5°C, −15°C, and −35°C, in order to understand how partitioning of HCHO between air and polar snow varies with temperature, and thus seasonally on the ice sheet. Measured partitioning coefficients were 56, 93, and 245 mol l−1 atm−1 for −5°C, −15°C and −35°C, respectively, showing a similar trend as the values previously estimated from field observations. Estimates of the pseudo-first-order rate coefficient for air–snow exchange for the same three temperatures were 4.1×10−4, 1.1×10−4, and 1.1×10−5 s−1, respectively. This implies a time scale for air–snow equilibration of the order of hours to days for HCHO accumulated at or near the ice–air interface on snow grains. Comparing the current laboratory partitioning coefficients with those estimated from measurements of air and freshly fallen snow in Greenland during summer demonstrates that the snow is supersaturated and should degas HCHO to the surrounding air. During this degassing, polar snow should be a significant source of HCHO to the lower troposphere.  相似文献   

11.
Abstract

The persistence of two insecticidally active compounds from the neem tree, azadirachtin A and B, was determined at two different temperatures (15 and 25°C) in the laboratory after application of the commercial neem insecticide, Margosan‐O, to a sandy loam soil. The influence of microbial activity on degradation was also examined by comparing autoclaved and non‐autoclaved soils also at 15 and 25°C. Temperature influenced degradation rates. The DT 50 (time required for 50% disappearance of the initial concentration) for azadirachtin A was 43.9 and 19.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. The DT 50 for azadirachtin B was 59.2 and 20.8 d for non‐autoclaved soil kept at 15 and 25°C, respectively. Microbial activity was also responsible for faster degradation because DT 50 ’s for autoclaved soil were much longer than for non‐autoclaved soils. DT 50 s for azadirachtin A in autoclaved soil were 91.2 (15°C) and 31.5 d (25°C). DT50’s for azadirachtin B in autoclaved soil were 115.5 (15°C) and 42.3 d (25°C). Two degradation products of azadirachtin were detected, but were not identified. Higher levels of the two degradation products were detected in non‐autoclaved soil.  相似文献   

12.
ABSTRACT

Manure-drying system using exhausted air from laying hen houses or ambient air has been extensively used in China to dewater the manure for easy transportation and to reduce pathogen levels prior to land application. Due to the climate influence or inappropriate setting of technological parameters, there are some issues in this manure-drying system, such as low dehydration rate, high energy consumption, and high ammonia emission. A purpose-designed experimental drying apparatus was set up to simulate the commercial manure drying system. Drying experiments were carried out to assess the impacts of hot air temperature (15–35°C), air velocity (0.6–1.8 m/s) and manure layer thickness (60–140 mm) on fan’s energy consumption, dehydration rate, and nitrogen loss rate. The response surface analysis method and sub-stepping method was used to analyze the relationships between the response variables and the influence factors. The drying curves were drawn, and the quadratic regression mathematical models that described the relations between the experimental indices and the influence factors were established. The optimal combination of technological parameters for drying laying-hen manure was obtained through conducting a multi-objective function optimization by function-expected optimization. The optimal parameters are as follows: hot air temperature of 35°C, air velocity of 1.60 m/s, and manure layer thickness of 85 mm. The results also indicate that raising the hot air temperature increased the value of synthesis objective function when the hot air temperature was in 26–35°C. The results can provide a theoretical basis for low-temperature drying of laying-hen manure in actual production.

Implications: A large amount of poultry manure is produced yearly in China, which has become a tremendous pressure on the environment when it cannot be utilized as resources. A more sustainable solution using the residual heat from the poultry house ventilation or ambient hot air has been widely used in China. This drying method can significantly reduce energy consumption compared to the traditional way. However, due to the influence of climate or inappropriate setting of technological parameters, issues such as high energy consumption and high ammonia emission still exist in this method. It is necessary to optimize the low-temperature drying process of laying-hen manure, to reduce energy consumption and nitrogen loss rate.  相似文献   

13.
Chlorine substitution reactions of 1,2,3,4-TCDD to higher chlorinated PCDD occurred on fly ash between 50°C to 250°C with an HC1 in air atmosphere in a laboratory reaction apparatus used to simulate emission conditions in municipal incinerators. Percent conversion of 1,2,3,4-TCDD through such reactions was as high as 66% by mass corrected for losses to irreversable absorption. Production of penta-, hexa-, hepta- and octa-CDD was evident and a maximum in production of P5CDD and H6CDD was reached in 10 to 30 min. Results showed that these reactions may involve complex mechanisms which include several states of adsorption with different reactivities of 1,2,3,4-TCDD on fly ash.  相似文献   

14.
High-temperature particle control (HTPC) using a ceramic filter is a dust collection method without inefficient cooling and reheating of flue gas treatment; thus, its use is expected to improve the energy recovery efficiency of municipal solid waste incinerators (MSWIs). However, there are concerns regarding de novo synthesis and a decrease in the adsorptive removal efficiency of dioxins (DXNs) at approximately 300°C. In this study, the effect of natural and activated acid clays on the decomposition of monochlorobenzene (MCB), one of the organochlorine compounds in MSW flue gas, was investigated. From the results of MCB removal tests at 30–300°C, the clays were classified as adsorption, decomposition, and low removal types. More than half of the clays (four kinds of natural acid clays and two kinds of activated acid clays) were of the decomposition type. In addition, the presence of Cl atoms detached from MCB was confirmed by washing the clay used in the MCB removal test at 300°C. Activated acid clay was expected to have high dechlorination performance because of its proton-rich-composition, but only two clays were classed as decomposition type. Conversely, all the natural acid clays used in this work were of the decomposition type, which contained relatively higher di- and trivalent metal oxides such as Al2O3, Fe2O3, MgO, and CaO. These metal oxides might contribute to the catalytic dechlorination of MCB at 300°C. Therefore, natural and activated acid clays can be used as alternatives for activated carbon at 300°C to remove organochloride compounds such as DXNs. Their utilization is expected to mitigate the latent risks related to the adoption of HTPC, and also to contribute to the improvement of energy recovery efficiency of MSWI.
ImplicationsThe effect of natural and activated acid clays on MCB decomposition was investigated to evaluate their suitability as materials for the removal of organochlorine compounds, such as DXNs, from MSWI flue gas at approximately 300°C. More than half of the clays used in this study showed the decomposition characteristics of MCB. The presence of Cl atoms in the clay used in the MCB removal test at 300°C proved the occurrence of MCB decomposition. The results of this study suggest a novel flue gas treatment method to establish high-energy efficient MSWI systems.  相似文献   

15.
Organic materials make up a significant fraction of ambient particulate mass. It is important to quantify their contributions to the total aerosol mass for the identification of aerosol sources and subsequently formulating effective control measures. The organic carbon (OC) mass can be determined by an aerosol carbon analyzer; however, there is no direct method for the determination of the mass of organic compounds, which also contain N, H, and O atoms in addition to C. The often-adopted approach is to estimate the organic mass (OM) from OC multiplying by a factor. However, this OC-to-OM multiplier was rarely measured for a lack of appropriate methods for OM. We report here a top-down approach to determine OM by coupling thermal gravimetric and chemical analyses. OM is taken to be the mass difference of a filter before and after heating at 550 °C in air for 4 h minus mass losses due to elemental carbon (EC), volatile inorganic compounds (e.g., NH4NO3), and loss of aerosol-associated water that arise from the heating treatment. The losses of EC and inorganic compounds are determined through chemical analysis of the filter before and after the heating treatment. We analyzed 37 ambient aerosol samples collected in Hong Kong during the winter of 2003, spring of 2004, and summer of 2005. A value of 2.1±0.3 was found to be the appropriate factor to convert OC to OM in these Hong Kong aerosol samples. If the dominant air mass is classified into two categories, then an OM-to-OC ratio of 2.2 was applicable to aerosols dominated by continent-originated air mass, and 1.9 was applicable to aerosols dominated by marine air mass.  相似文献   

16.
Environmental Science and Pollution Research - Volatile organic compounds (VOCs), which are usually organic compounds with boiling point in the range of 50 to 260°C, pose a serious threat to...  相似文献   

17.
A new bromine, microcoulometric titration cell has been used with a commercially-available microcoulometer for the detection and analysis of sulfur-containing gases in various kraft mill emissions. Separation of the constituents of the gaseous mixtures emitted from mill sources including the recovery furnace, digestors, evaporators, lime kiln, and dissolvers was accomplished on an 8-ft, 3/16 in. stainless steel column packed with 10% Triton X-305 on 60–80 mesh Chromosorb G, DMCS-treated. The column was isothermally operated at 30°C for 4–6 mins and then rapidly raised to 70°C The exact program was varied with the type of sample analyzed. Each source gas was initially screened by direct injection of 0.01–0.1 ml of gas to determine whether or not disproportionately large concentrations of one or more components were present. Appropriate sample volumes were then selected to provide “on-scale” recorder peaks for the major constituents. Elution times for the major constituents were observed so that these compounds could be vented at the proper time following injection of large sample volumes (up to 10 ml) for detection and analysis of minor constituents. Venting of the high concentration compounds was necessary when analyzing large volume samples to maintain near equilibrium titration conditions in the microtitration cell.  相似文献   

18.
The effects of alkali-enhanced microwave (MW; 50–175 °C) and ultrasonic (US) (0.75 W/mL, 15–60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW–alkali pretreatment (pH 12?+?175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US–alkali pretreatment (pH 12?+?60 min), respectively. The biogas yield for US 60 min–alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)–alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal–alkali treatment condition.  相似文献   

19.
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry’s law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3–45 °C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H2S, a higher enthalpy of air–liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength.  相似文献   

20.
Bench-scale experiments have been conducted to evaluate a series of titania-supported Pt-Pd (as oxides) catalysts in the presence and absence of MoO3 and Fe2O3 additives for their effectiveness in the complete catalytic oxidation of volatile organic compounds (VOCs) in air likely to be found in waste gases. Under oxidizing conditions, all of the catalysts promoted the complete oxidation of VOCs to CO2 and H2O. 99 % Conversion was achieved with a C2H4-C2H6 gas mixture in air at temperatures between about 160–450 °C and at a space velocity of 20,000 h?1. Oxidation activity for the titania supported catalysts were found to decrease in the order Pt-Pd-Mo-Fe > Pt-Pd-Mo > Pt-Pd-Fe > Pt-Pd. However, the addition of MoO3 and Fe2O3 increase the catalyst activity and reduce the reaction temperature for the complete destruction. Ageing was also performed in order to study the stability of the most active catalyst. Pt-Pd-Mo-Fe (as oxides) on titania catalyst is effective in oxidizing a wide range of volatile organic compounds at relatively low temperatures (220–405 °C) and and at a space velocity of 40,000 h?1 and is resistant to poisoning by halogenated and amine volatile organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号