首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
原油及油制品中多环芳烃化学指纹的分布规律研究   总被引:1,自引:0,他引:1  
利用原油及油制品中的多环芳烃(PAHs)化学指纹特征进行溢油鉴别是确定海上溢油事故污染源的重要技术.使用气相色谱一质谱联用方法测定了汽油E90#、汽油E93#、润滑油150SN、轻柴油-10#、柴油5#、重柴油180#、重柴油380#、俄罗斯原油及大庆原油的PAHs化学指纹图谱.结果表明,在各种PAHs中,萘(Nap)、2-甲基萘(2-MN)和1-甲基萘(1-MN)的含量最高,三者总和占52%~86%(质量分数,下同).轻质油(汽油、轻柴油、柴油和润滑油)和重质油(原油和重柴油)的化学指纹图谱存在明显差异:重质油中2-MN平均为28%,轻质油中Nap平均为42%.Nap/2-MN(Nap与2-MN质量比,以下各物质表述意义同)和Nap/1-MN的比值关系区分的趋势类似,并且存在典型的线性相关性(R=0.92,p<0.01).表明原油及油制品中的Nap、1-MN和2=MN的含量相对固定,使用Nap/2-MN和Nap/1-MN比值方法鉴别油类品种具有较高的可靠性.应用主成分分析方法对9种油样的PAHs化学指纹特征进行了分析,结果表明该方法是一种有效和有潜力的溢油鉴别方法.  相似文献   

2.
在单缸风冷四冲程直喷柴油发电机上,燃用柴油、生物柴油、10%乙醇-45%生物柴油-45%柴油(E10B45D45)和20%乙醇-40%生物柴油-40%柴油(E20B40D40),采用16%、28%EGR率,测试并分析了经济性,NO_x、HC和CO的排放性能和烟气的光吸收系数。研究表明:柴油的油耗最低,生物柴油次之,随着乙醇含量的增加,混合燃料的油耗增加;随着乙醇含量的增多,NO_x排放量降低,与燃用柴油相比,E10B45D45和E20B40D40平均可降低约16.1%和30.2%;采用EGR可有效降低NO_x排放,对应16%、28%EGR率,E10B45D45的NO_x排放可平均降低19.3%和39.5%,E20B40D40平均降低10.7%和43.5%;随着乙醇含量的增多,HC排放量显著升高,对比于柴油,E10B45D45和E20B40D40分别升高了59.8%和172.1%;采用EGR后,HC排放增加;随乙醇含量的增加,CO排放也明显增大,对比于柴油,E10B45D45和E20B40D40分别升高了58.6%和131.1%;采用EGR后CO排放增加;各燃料中,柴油在小、中负荷烟气的光吸收系数最低,大负荷时却最高;不宜在小负荷时采用较高的乙醇掺混比和较大的EGR率。  相似文献   

3.
微生物在环境中的丰度和多样性受到广泛关注.系统介绍了一种通过分析微生物菌群中电子传递体的种类和数量来表征其群落丰度和多样性的方法——醌指纹法.综述了醌指纹法的原理和检测分析手段,归纳了醌指纹法在废水处理、水体、土壤和堆肥环境场景中的应用,此外还分析了醌指纹法的优缺点.最后,对醌指纹法在未来微生物治理领域的应用进行了展望...  相似文献   

4.
通过常规微生物学分析方法并结合ERIC—PCR指纹图谱技术,分析了生物栅系统中填料生物膜的微生物群落结构,探讨了生物栅系统微生物群落结构与污染物降解的作用关系。结果表明,生物栅集成系统中的微生物数量能维持较高的数量级,填料生物膜上的异养细菌在10^7~10^9数量级,硝酸细菌也在10^5数量级以上;系统对CODcr、NH3-N去除率比空白池分别约高35%、30%,且系统运行中功能细菌数量与污染物去除率呈现出显著的正相关性;ERIC—PCR指纹图谱分析表明,随着系统的运行,各反应池中微生物多样性指数不断增加,微生物种群趋于丰富,相似性指数增高,生物栅系统表现出良好的运行稳定性。  相似文献   

5.
美国明尼苏达州罪犯拘捕局的指纹认证检查员GIenn Langenburg说,人类继承了所谓的摩擦脊皮肤(FRS即指纹)整体的大小、形状以及间隔。但是,使指纹具有独特性的个体细节并不是由基因决定的。FRS由一系列增加摩擦力的纹脊和沟组成,它独一无二,而且持久不变。没有两个人(包括双胞胎)的指纹具有完全相同的排列,而且指纹在整个一生中都不会改变(除非严重损伤而产生永久性的伤疤)。指纹具此特性,因此产生了独特的作用,比如人类研究指纹锁、指纹认证……  相似文献   

6.
以混合柴油为靶污染物,通过对比实验研究了油污染物在模拟水环境中的降解效果。研究表明,模拟自然条件下混合柴油污染物总体降解较慢,油质去除率低;生物强化降解条件下,向混合柴油污染水样中添加驯化培养的微生物混合菌群,生物降解速率明显提高,油质去除率达到98%以上。研究还发现,各污染水样中油的降解速率与降解效果随柴油的配比而不同,混合柴油样本中生物柴油的比例越高,样本的降解率越高,表明生物柴油作为碳源有效改善了水中有机营养配比,促进了柴油的去除效果。进一步分析表明,混合柴油在水中的降解过程符合一级反应动力学,生物强化降解条件下,生物柴油比例越高,混合柴油降解速率越快,除油微生物以菌胶团、球菌和丝状菌为主。  相似文献   

7.
生物柴油萃取高浓度吡啶废水   总被引:1,自引:0,他引:1  
农药、医药等行业的生产过程中产生含有高浓度吡啶的废水,采用溶剂萃取法萃取废水中的吡啶既可改善废水的可生化性,又可实现吡啶的循环利用.实验以生物柴油为萃取剂,讨论了体系的pH值、温度、相比及时间等条件对萃取分配系数(D)及吡啶去除率的影响.结果表明,较为适宜吡啶萃取的条件是:萃取时间为30 min,pH值为6,温度为30℃,相比为1:1.在上述萃取条件下,生物柴油与吡啶水溶液进行六级错流萃取后,水中吡啶浓度从15%降至0.84%,吡啶去除率达到94.40%.  相似文献   

8.
采用综合生物标志物响应指数(IBR)评价尾矿库污染程度及范围。在尾矿库周边18个采样点采集盐地碱蓬、苦菜、芦苇和地下水潜层水样,分析3种植物中5种生物标志物活性(含量)以及地下水中53种离子浓度。根据每种生物标志物与地下水中离子浓度之间的皮尔逊相关性,筛选芦苇中过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化歧化酶(SOD)、丙二醛(MDA)作为评价指标,将这4种生物标志物响应值用于计算IBR。结果表明,尾矿库周边17个采样点(GW-4未取到样品)的IBR介于5.63~512.37,差异性显著(P0.05),依次为GW-16GW-8GW-7GW-11GW-5GW-1GW-17GW-2GW-6GW-10GW-18GW-3GW-13GW-12GW-15GW-14GW-9。IBR评价结果与采样点地下水中污染离子变化趋势及浓度监测结果基本一致。IBR与微核千分率、地下水中各种离子相关性较为显著(P0.05),表明IBR可以直接用于尾矿库的生态风险评价。  相似文献   

9.
对4种生物柴油促进原油污染砂粒释放油的效果进行了研究,并探讨了菜籽生物柴油投加量和砂粒粒径对促进效果的影响。结果表明,菜籽生物柴油的促进效果最好,8 h释放量达到73%,废油脂生物柴油的效果最差,仅为52%;生物柴油的促进效果随着投加量的增大而升高,当投加量超过海水体积的5%时促进效果不再明显增加;在生物柴油作用下,小粒径砂粒上原油的释放效果优于大粒径砂粒。  相似文献   

10.
溢油向岸滩漂移会造成海岸带人工构筑物的严重污染。采用混凝土片模拟滨海构筑物,研究投加生物柴油及营养对石油污染物的去除效果。结果表明,施加生物柴油可以促进滨海构筑物上的石油进入水中,生物柴油施加量越大,构筑物上残余的石油量越小;同时施加生物柴油和营养能够促进海水中降解石油微生物的增殖和石油的降解;营养和微生物条件一致的情况下,投加2 mL和5 mL生物柴油的系统中石油的总去除率分别为37.5%和32.7%,表明生物柴油的投加量有一个适宜值。研究结果可为生物柴油-营养联合修复石油污染海岸带提供数据支持。  相似文献   

11.
Emissions from diesel vehicles and gas-powered heavy-duty vehicles are becoming a new focus of many inspection and maintenance (I/M) programs. Diesel particulate matter (PM) is increasingly becoming more recognized as an important health concern, while at the same time, the public awareness of diesel PM emissions because of their visibility have combined to increase the focus on diesel emissions in the United States. This has resulted in an increased interest by some states in including heavy-duty vehicle testing in their I/M program. This paper provides an overview of existing I/M programs focused on testing light-duty diesel vehicles, heavy-duty diesel vehicles, and heavy-duty gasoline vehicles (HDGVs). Information on 39 I/M programs in 27 different states in the United States plus 9 international inspection programs is included. Information on the status of diesel emissions technology and current test procedures is also presented. The goal is to provide useful information for air quality managers as they work to decide whether such I/M programs would be worth pursuing in their respective areas and in evaluating the emissions measurement technology to be used in the program. Testing of HDGVs is generally limited to idle testing, because dynamometer testing of these vehicles is not practical, and most were not certified on a chassis basis. Testing of diesel vehicles has mostly been limited to SAE J1667 "snap-idle" opacity testing. Cost-effective technology for measuring diesel emissions currently does not exist, and, therefore, opacity-type measurements, although not effective at reducing the pollutants of most significant health concern, will continue to be used.  相似文献   

12.
分析探讨了柴油机排气颗粒物的组成及危害,介绍了一种燃油催化微粒捕集器的结构及原理,结合发动机台架试验数据分析了该微粒捕集器对柴油机排气颗粒物的改善效果,同时研究了该微粒捕集器的强制再生过程以及对柴油机动力性和燃油经济性的影响.试验结果表明,该微粒捕集器具有较大的应用前景.  相似文献   

13.
The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h)?1 and that of diesel is 30.7 mg (kW h)?1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.  相似文献   

14.
研究了中国柴油机与柴油汽车烟度排放标准的发展和现状,分析了现行标准应用中应注意的问题,指出柴油机和柴油汽车烟度排放标准不统一,在烟度限值、试验方法、试验规程、试验仪器等方面存在较大差异.强调了自1993年以来,中国对柴油汽车的烟度排放要求并没有提高,以及出台更为严格的强制性标准和法规对在用柴油车排放监控的重要性,旨在有...  相似文献   

15.
The effect of sulfur content on diesel particulate matter (DPM) emissions was studied using a diesel generator (Generac Model SD080, rated at 80 kW) as the emission source to simulate nonroad diesel emissions. A load simulator was used to apply loads to the generator at 0, 25, 50, and 75 kW, respectively. Three diesel fuels containing 500, 2100, and 3700 ppm sulfur by weight were selected as generator fuels. The U.S. Environmental Protection Agency sampling Method 5 "Determination of Particulate Matter Emissions from Stationary Sources" together with Method 1A "Sample and Velocity Traverses for Stationary Sources with Small Stacks or Ducts" was adopted as a reference method for measurement of the exhaust gas flow rate and DPM mass concentration. The effects of various parameters on DPM concentration have been studied, such as fuel sulfur contents, engine loads, and fuel usage rates. The increase of average DPM concentrations from 3.9 mg/Nm3 (n cubic meter) at 0 kW to 36.8 mg/Nm3 at 75 kW is strongly correlated with the increase of applied loads and sulfur content in the diesel fuel, whereas the fuel consumption rates are only a function of applied loads. An empirical correlation for estimating DPM concentration is obtained when fuel sulfur content and engine loads are known for these types of generators: Y = Zm(alphaX + beta), where Y is the DPM concentration, mg/m3, Z is the fuel sulfur content, ppm(w) (limited to 500-3700 ppm(w)), X is the applied load, kW, m is the constant, 0.407, alpha and beta are the numerical coefficients, 0.0118 +/- 0.0028 (95% confidence interval) and 0.4535 +/- 0.1288 (95% confidence interval), respectively.  相似文献   

16.
Emissions of carbonyl compounds such as formaldehyde, acetaldehyde, and acrolein are of interest to the scientific and regulatory communities due to their suspected or likely impacts on human health. The present work investigates emissions of carbonyl compounds from nine Class 8 heavy-duty diesel (HDD) tractors and also from nine diesel-powered backup generators (BUGs); the former were chosen because of their ubiquity as an emission source, and the latter because of their proximity to centers of human activity. The HDD tractors were operated on the ARB 4-Mode heavy heavy-duty diesel truck (HHDDT) driving cycle, while the BUGs were operated on the ISO 8178 Type D2 5-mode steady-state cycle and sampled using a mobile emissions laboratory (UCR MEL) equipped with a full-scale dilution tunnel. Samples were analyzed using the SAE930142 (Auto/Oil) method for 11 aldehydes, from formaldehyde to hexanaldehyde, and 2 ketones (acetone and methyl ethyl ketone). Although absolute carbonyl emissions varied widely by BUG, the relative contributions of the different carbonyls were similar (e.g., median: 56% for formaldehyde). A slight increasing trend with engine load was observed for relative formaldehyde contribution, but not for acetaldehyde contribution, for the BUGs. On-road per-mile carbonyl emission factors were a strong function of operating mode of the ARB HHDDT cycle, and found to decrease in the order Creep>Transient>Cruise. This order is qualitatively similar to emission factors for PAHs and n-alkanes determined for the same set of Class 8 diesel tractors in an earlier work. In general, relative carbonyl contributions for the HDD tractors were similar to those for BUGs (e.g., median: 54% for formaldehyde). These results indicate that while engine operating mode and application appear to exert a strong influence on the total absolute mass emission rate of the carbonyls measured, they do not appear to exert as strong an influence on the relative mass emission rates of individual carbonyls.  相似文献   

17.
18.
Environmental Science and Pollution Research - Nonrenewable fossil fuels show increased demand and with fossil fuels at a rapid depleting stage, there seems to be an increase in requirement for...  相似文献   

19.
Modern diesel particulate filter (DPF) systems are very effective in reducing particle emissions from diesel vehicles. In this work low-level particulate matter (PM) emissions from a DPF equipped EURO-4 diesel vehicle were studied in the emission test laboratory as well as during real-world chasing on a high-speed test track. Size and time resolved data obtained from an engine exhaust particle sizer (EEPS) and a condensation particle counter (CPC) are presented for both loaded and unloaded DPF condition. The corresponding time and size resolved emission factors were calculated for acceleration, deceleration, steady state driving and during DPF regeneration, and are compared with each other. In addition, the DPF efficiency of the tested vehicle was evaluated during the New European Driving Cycle (NEDC) by real time pre-/post-DPF measurements and was found to be 99.5% with respect to PM number concentration and 99.3% for PM mass, respectively. PM concentrations, which were measured at a distance of about 10 m behind the test car, ranged from 1 to 1.5 times background level when the vehicle was driven on the test track under normal acceleration conditions or at constant speeds below 100 kmh?1. Only during higher speeds and full load accelerations concentrations above 3 times background level could be observed. The corresponding tests in the emission laboratory confirmed these results. During DPF regeneration the total PM number emission of nucleation mode particles was 3–4 orders of magnitude higher compared to those emitted at the same speed without regeneration, while the level of the accumulation mode particles remained about the same. The majority of the particles emitted during DPF regeneration was found to be volatile, and is suggested to originate from accumulated sulfur compounds.  相似文献   

20.
Influence of diesel fuel on seed germination   总被引:5,自引:0,他引:5  
The use of plant-based systems to remediate contaminated soils has become an area of intense scientific study in recent years and it is apparent that plants which grow well in contaminated soils need to be identified and screened for use in phytoremediation technologies. This study investigated the effect of diesel fuel on germination of selected plant species. Germination response varied greatly with plant species and was species specific, as members of the same plant family showed differential sensitivity to diesel fuel contamination. Differences were also seen within plant subspecies. At relatively low levels of diesel fuel contamination, delayed seed emergence and reduced percentage germination was observed for the majority of plant species investigated. Results suggest the volatile fraction of diesel fuel played an influential role in delaying seed emergence and reducing percentage germination. In addition, the remaining diesel fuel in the soil added to this inhibitory effect on germination by physically impeding water and oxygen transfer between the seed and the surrounding soil environment, thus hindering the germination response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号