首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work shows how ambient radon concentrations measured at Cabauw station in central Netherlands are influenced by transport from different regions under typical transport conditions occurring during April and November, 2007 by means of atmospheric Lagrangian particle dispersion modelling in a receptor-oriented approach. Four specific regions have been isolated to assess their contribution to the modelled radon ambient concentrations at Cabauw, and two different radon flux assumptions. Westerly flows coming from the ocean are poor in radon and do not increase radon air concentrations unless there is some fetch over the British Isles. Continental transport, mainly from eastern and southern Europe, significantly increases radon background concentrations, reaching increments of 3 Bq m?3. A constant 0.66 atoms cm?2 s?1 radon flux over land and zero over water bodies is a good approximation for the source term in order to study regional contributions and modulation of the radon background.  相似文献   

2.
A previous assessment of nitrogen loading to the Delaware Inland Bays indicates that atmospheric deposition provides 15-25% of the total, annual N input to these estuaries. A large and increasing fraction of the atmospheric wet flux is NH(4)(+), which for most aquatic organisms represents the most readily assimilated form of this nutrient. Particularly noteworthy is a 60% increase in the precipitation NH(4)(+) concentration at Lewes, DE over the past 20 years, which parallels the increase in poultry production on the Delmarva Peninsula over this period (currently standing at nearly 585 million birds annually). To further examine the relationship between local NH(3) emissions and deposition, biweekly-integrated gaseous NH(3) concentrations were determined using Ogawa passive samplers deployed at 13 sampling sites throughout the Inland Bays watershed over a one-year period. Annual mean concentrations at the 13 sites ranged from <0.5 microg NH(3)m(-3) to >6 microg NH(3)m(-3), with a mean of 1.6+/-1.0 microg NH(3)m(-3). At most sites, highest NH(3) concentrations were evident during spring and summer, when fertilizer application and poultry house ventilation rates are greatest, and seasonally elevated temperatures induce increased rates of microbial activity and volatilization from soils and animal wastes. The observed north-to-south concentration gradient across the watershed is consistent with the spatial distribution of poultry houses, as revealed by a GIS analysis of aerial photographs. Based on the average measured NH(3) concentration and published NH(3) deposition rates to water surfaces (5-8 mm s(-1)), the direct atmospheric deposition of gaseous NH(3) to the Inland Bays is 3.0-4.8 kg ha(-1)yr(-1). This input, not accounted for in previous assessments of atmospheric loading to the Inland Bays, would effectively double the estimated direct dry deposition rate, and is on par with the NO(3)(-) and NH(4)(+) wet fluxes. A second component of this study examined spatial differences in NO(3)(-) and NH(4)(+) wet deposition within the Inland Bays watershed. In a pilot study, precipitation composition at the Lewes NADP-AIRMoN site (DE 02) was compared with that at a satellite site established at Riverdale on the Indian River Estuary, approximately 21 km southwest. While the volume-weighted mean precipitation NO(3)(-) concentrations did not differ significantly between sites, the NH(4)(+) concentration observed at Riverdale (26.3 micromoles L(-1)) was 73% greater than at Lewes (15.2 micromoles L(-1)). More recently, a NADP site was established at Trap Pond, DE (DE 99), which was intentionally located within the region of intense poultry production. A comparison of the initial two years (6/2001-5/2003) of precipitation chemistry data from Trap Pond with other nearby NADP-AIRMoN sites (Lewes and Smith Island) reveals fairly homogeneous NO(3)(-) wet deposition, but significant spatial differences ( approximately 60%) in the NH(4)(+) wet flux. Overall, these results suggest that local emissions and below-cloud scavenging provide a significant contribution to regional atmospheric N deposition.  相似文献   

3.
Releases of ammonia (NH3) to the atmosphere contribute significantly to the deposition of nitrogen to both terrestrial and aquatic ecosystems. This is the background for the national NH3 emission ceilings in Europe. However, in some countries the national legislation aims not only to meet these ceilings but also to reduce the atmospheric nitrogen deposition to local ecosystems. Such measures to reduce the load of nitrogen to local ecosystems were introduced in Denmark in 1994. In this paper we demonstrate that this regulation is reflected in the NH3 concentrations in Denmark. The Danish legislation forces farmers to applying manure to the fields during the crop-growing season. We have analyzed the seasonal variation in local NH3 concentrations over the time period of 1989-2003. During this period the seasonal variation has changed from having moderate spring and autumn concentration peaks to having a single and much more pronounced spring peak. In the analysis we apply an NH3 emission model to demonstrate that these changes in the seasonal variation are a result of the changes in the Danish legislation. The analysis demonstrates the strength of using a high-resolution emission model in the analysis of routine monitoring data.  相似文献   

4.
Atmospheric concentrations of gaseous NH3 and HNO3 and of particulate NH4+ and NO3- were measured during various seasons at a forest ecosystem research site in the "Fichtelgebirge" mountains in Central Europe. Air masses arriving at this site were highly variable with respect to trace compound concentration levels and their concentration ratios. However, the distributions of NH4+ and NO3- within the aerosol particle size spectra exhibited some very consistent patterns, with the former dominating the fine particle concentrations, and the latter dominating the coarse particles range, respectively. Overall, the particulate phase (NH4+ + NO3-) dominated the atmospheric nitrogen budget (particulate and gas phase, NH4+ + NO3- + NH3 + HNO3) by more than 90% of the median total mixing ratio in winter, and by more than 60% in summer. The phase partitioning varied significantly between the winter and summer seasons, with higher relative importance of the gaseous species during summer, when air temperatures were higher and relative humidities lower as compared to the winter season. Reduced nitrogen dominated over oxidized nitrogen, indicating the prevailing influence of emissions from agricultural activity as compared to traffic emissions at this mountainous site. A model has been successfully applied in order to test the hypothesis of thermodynamic equilibrium between the particulate and gas phases.  相似文献   

5.
Micrometeorological methods were applied to measure fluxes of atmospheric ammonia (NH3) to moorlands. Measurements were made in a wide variety of surface conditions and included both Calluna vulgaris (L.) Hull and Eriophorum vaginatum L. dominated sites. NH3 was found to deposit rapidly to all the sites investigated, providing large deposition velocities (Vd, typically 10-40 mm s(-1)) and usually minimal surface resistances (rc). A small number of measurements were made in frozen conditions and suggest a possible exception to this pattern with mean rc of 50-200 s m(-1). The effect of vegetation drying was also investigated and a possible increase in rc observed, though this was small (< 10 s m(-1)). The results are interpreted in terms of the processes controlling exchange; it is shown that NH3 deposition is predominantly to the leaf surfaces and that the net NH3 compensation point approaches zero. Annual estimates show that dry deposition of NH3 is a major source of atmospheric nitrogen to moorland ecosystems. For two typical UK sites subject to background air concentrations, NH3 dry deposition is of similar magnitude to equivalent NH4+ inputs in wet deposition. In the vicinity of emission sources, NH3 dry deposition is expected to dominate inputs of atmospheric nitrogen.  相似文献   

6.
Karl H  Ruoff U 《Chemosphere》2007,67(9):S90-S95
The contaminant levels of dioxins, dioxin-like PCBs and a range of chloroorganic compounds have been determined in relation to various fishing grounds of the Baltic Sea. Sampling covered an area from the Skagerrak to the coast of Latvia. The data are compared with herring from fishing grounds in the North Sea and west of the British Isles. Also the temporal trend of the dioxin levels in the edible part of herring landed around the Island of Rügen is given from commercial samples collected between 1996 and 2004. A continuous increase of the dioxin concentrations was observed from west to east. Lowest concentrations of 0.199 ng WHO-PCDD/F-TEQ kg(-1)wet weight were found in herring fillets west of the British Isles. Highest level of 6.972 ng WHO-PCCD/F-TEQ kg(-1)w.w. was analysed in fillets off the coast of Latvia. Results showed also a spatial dependence of the WHO-TEQ ratio dioxins:dioxin-like PCBs and of the dioxin congener profile. Only the DDT group of various chloroorganic compounds determined, showed a dependence from the fishing ground. A clear temporal tendency could not be deduced from the data.  相似文献   

7.
The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4+; 20%), coarse nitrate (NO3-; 16%), fine NO3 (5%), and coarse NH4+ (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4+ concentrations.  相似文献   

8.
In this study, we present approximately two years (January 1999-December 2000) of atmospheric NH3, NH4+, HCl, Cl-, HNO3, NO3-, SO2, and SO4= concentrations measured by the annular denuder/filter pack method at an agricultural site in eastern North Carolina. This site is influenced by high NH3 emissions from animal production and fertilizer use in the surrounding area and neighboring counties. The two-year mean NH3 concentration is 5.6 (+/-5.13) microg m(-3). The mean concentration of total inorganic PM2.5, which includes SO4=, NO3-, NH4+, and Cl-, is 8.0 (+/-5.84) microg m(-3). SO4=, NO3-, NH4+, and Cl- represent, respectively, 53, 24, 22, and 1% of measured inorganic PM2.5. NH3 contributes 72% of total NH3 + NH4+, on an average. Equilibrium modeling of the gas+aerosol NH3/H2SO4/HNO3 system shows that inorganic PM2.5 is more sensitive to reductions in gas + aerosol concentrations of sulfate and nitrate relative to NH3.  相似文献   

9.
The EMEP precipitation composition network is used to examine relationships between non-marine SO4(2-), NO3-, NH4+, H+ concentrations and precipitation amount and a local zonal pressure index (an index of the atmospheric circulation). The pattern of the relationships changes across Europe with the zonal pressure gradient explaining more of the variance in ion concentrations in the west, and precipitation amount explaining relatively more of the variance in the east. There is some predictive capability for precipitation composition in the zonal pressure gradient for restricted regions in Europe; R2 values are up to 40% on a daily basis but in some seasons/months attain >60%. The zonal pressure gradient is an index which appears to include pertinent information on transport and wet removal. Preliminary analysis indicates that this approach can be useful in assessing the contributions of changing atmospheric circulation to time-trends of wet acidic deposition in an area stretching from the UK over the North Sea to Denmark. The zonal pressure gradient is known to have varied on time-scales of decades, and the simple index may be one appropriate approach to assessing future deposition patterns from future climate projections.  相似文献   

10.
This paper presents a comprehensive atmospheric global and regional mercury model and its capability in describing the atmospheric cycling of mercury. This is an on-line model (integrated within the Canadian operational environmental forecasting and data assimilation system) which can be used to understand the role of meteorology in mercury cycling (atmospheric pathways), the inter-annual variability of mercury and can be evaluated against observations on global scales. This is due to the fact that the model uses a combination of actual observed and predicted meteorological state of the atmosphere at high resolution to integrate the model as opposed to the climatological approach used in existing global mercury models. The model was integrated and evaluated on global scale using only anthropogenic emissions. North to south gradients in mercury concentrations, seasonal variability, dry and wet deposition and vertical structure are well simulated by the model. The model was used to explain the observed seasonal variations in atmospheric mercury circulation. The results from this study include a global animation of surface air concentrations of total gaseous mercury for 1997.  相似文献   

11.
Over the past 50 years, Lake Tahoe, an alpine lake located in the Sierra Nevada mountains on the border between California and Nevada, has seen a decline in water clarity. With significant urbanization within its borders and major urban areas 130 km upwind of the prevailing synoptic airflow, it is believed the Lake Tahoe Basin is receiving substantial nitrogen (N) input via atmospheric deposition during summer and fall. We present preliminary inferential flux estimates to both lake surface and forest canopy based on empirical measurements of ambient nitric acid (HNO3), ammonia (NH3), and ammonium nitrate (NH4NO3) concentrations, in an effort to identify the major contributors to and ranges of atmospheric dry N deposition to the Lake Tahoe Basin. Total flux from dry deposition ranges from 1.2 to 8.6 kg N ha-1 for the summer and fall dry season and is significantly higher than wet deposition, which ranges from 1.7 to 2.9 kg N ha-1 year-1. These preliminary results suggest that dry deposition of HNO3 is the major source of atmospheric N deposition for the Lake Tahoe Basin, and that overall N deposition is similar in magnitude to deposition reported for sites exposed to moderate N pollution in the southern California mountains.  相似文献   

12.
Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review   总被引:17,自引:0,他引:17  
At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4+ uptake occurs through the shoots, roots and through both pathways. However, NH4+ is immobile in the soil and is converted to NO3- (nitrate). In agricultural systems, additions of NO3- to the soil (initially as NH3 or NH4+) and the consequent increases in the emissions of N2O (nitrous oxide, a greenhouse gas) and leaching of NO3- into the ground and surface waters are of major environmental concern. At the ecosystem level NH3 deposition cannot be viewed alone, but in the context of total N deposition. There are a number of forest ecosystems in North America that have been subjected to N saturation and the consequent negative effects. There are also heathlands and other plant communities in Europe that have been subjected to N-induced alterations. Regulatory mitigative approaches to these problems include the use of N saturation data or the concept of critical loads. Current information suggests that a critical load of 5-10 kg ha(-1) year(-1) of total N deposition (both dry and wet deposition combined of all atmospheric N species) would protect the most vulnerable terrestrial ecosystems (heaths, bogs, cryptogams) and values of 10-20 kg ha(-1) year(-1) would protect forests, depending on soil conditions. However, to derive the best analysis, the critical load concept should be coupled to the results and consequences of N saturation.  相似文献   

13.
Reactive nitrogen can travel far from emission sources and impact sensitive ecosystems. From 2002 to 2006, policy actions have led to decreases in NO(x) emissions from power plants and motor vehicles. In this study, atmospheric chemical transport modeling demonstrates that these emissions reductions have led to a downward trend in ambient measurements of transported reactive nitrogen, especially atmospheric concentrations and wet deposition of nitrate. The trend in reduced nitrogen, namely ammonium, is ambiguous. As reduced nitrogen becomes a larger fraction of the reactive nitrogen budget, wide-spread NH(3) measurements and improved NH(3) emissions assessments are a critical need.  相似文献   

14.
A local ammonia (NH3) inventory for a 5x5 km area in central England was developed, to investigate the variability of emissions, deposition and impacts of NH3 at a field scale, as well as to assess the validity of the UK 5-km grid inventory. Input data were available for the study area for 1993 and 1996 on a field by field basis, allowing NH3 emissions to be calculated for each individual field, separately for livestock grazing, livestock housing and manure storage, landspreading of manures and fertiliser N application to crops and grassland. An existing atmospheric transport model was modified and applied to model air concentrations and deposition of NH3 at a fine spatial resolution (50 m grid). From the mapped deposition estimates and land cover information, critical loads and exceedances were derived. to study the implications of local variability for regional NH3 impacts assessments. The results show that the most extreme local variability in NH3 emissions, deposition and impacts is linked to housing and storage losses. However, landspreading of manures and intensive cattle grazing are other important area sources, which vary substantially in the landscape. Overall, the range of predicted emissions from agricultural land within the study area is 0-2000 kg N ha(-1) year(-1) in 1993 and 0-8000 kg N ha(-1) year(-1) in 1996, respectively, with the peak at a poultry farm located in the study area. On average, the estimated field level NH3 emissions over the study area closely match the emission for the equivalent 5-km grid square in the national inventory for 1996. Deposition and expected impacts are highly spatially variable, with the edges of woodland and small "islands" of semi-natural vegetation in intensive agricultural areas being most at risk from enhanced deposition. Conversely the centres of larger nature reserves receive less deposition than average. As a consequence of this local variability it is concluded that national assessments at the 5 km grid level underestimate the occurrence of critical loads exceedances due to NH3 in agricultural landscapes.  相似文献   

15.
The effects of wet-deposited nitrogen on soil acidification and the health of Norway spruce were investigated in a pot experiment using an open-air spray/drip system. Nitrogen was applied as ammonium ((NH(4))(2)SO(4)) or nitrate (HNO(3)/NaNO(3)) in simulated rain to either the soil or the foliage. Symptoms of forest decline as observed in the field were not reproduced, and there was no evidence of direct toxicity. Treatments did, however, have significant effects on tree nutrition. Both NH(+)(4) and NO(-)(3) treatment applied to the foliage lowered foliar K concentrations. NH(+)(4) to a greater extent. Soil-applied NH(+)(4) reduced foliar Mg concentrations and increased foliar Al and Fe. Soil-applied NO(-)(3) significantly reduced foliar P concentrations, and at high doses prevented the alleviation of P deficiency by fertiliser. These effects could be important in some field situations. Ammonium deposition is predicted to be more damaging than nitrate deposition, although the latter may be critical for forests where P status is marginal, such as in parts of the British uplands.  相似文献   

16.
A global three-dimensional Lagrangian chemistry-transport model STOCHEM is used to describe the European regional acid deposition and ozone air quality impacts along the Atlantic Ocean seaboard of Europe, from the SO2, NOx, VOCs and CO emissions from international shipping under conditions appropriate to the year 2000. Model-derived total sulfur deposition from international shipping reaches over 200 mg S m(-2) yr(-1) over the southwestern approaches to the British Isles and Brittany. The contribution from international shipping to surface ozone concentrations during the summertime, peaks at about 6 ppb over Ireland, Brittany and Portugal. Shipping emissions act as an external influence on acid deposition and ozone air quality within Europe and may require control actions in the future if strict deposition and air quality targets are to be met.  相似文献   

17.
Measurements of ammonia emission from grazed grassland   总被引:2,自引:0,他引:2  
Some of the factors influencing NH(3) emission from grazed grassland were examined. The large day-to-day variation in rates of loss were only partially explained by variation in the measured environmental factors (wind speed, soil and air temperature, soil moisture status, relative humidity, rainfall and potential evapotranspiration). Of the measured variables, wind speed had the largest effect but the best multiple linear regression model of daily NH(3) loss had an adjusted R(2) value of only 0.406. The mechanisms controlling NH(3) flux were therefore unclear. There were marked diurnal rhythms in NH(3) loss and the concentration gradients above the sward were strongest during the period which included the 3 h each side of midday. This pattern of NH(3) release has important implications in relation to atmospheric mixing processes and chemical reactions. A comparison of two means of determining NH(3) concentrations, i.e. a bubbler collection system or denuder tubes, indicated that different forms were collected which could be related to the environmental conditions. Such differences and effects should be considered when models are developed to describe the behaviour of nitrogenous and other species in the atmosphere.  相似文献   

18.
Effects of atmospheric ammonia on vegetation--a review   总被引:12,自引:0,他引:12  
Atmospheric ammonia does not only cause acute injuries at vegetation close to the source, but significantly contributes to large scale nitrogen eutrophication and acidification of ecosystems because the amount of sources is high and after conversion to ammonium it can reach remote areas by long-range atmospheric transport. Besides having acute toxic potential, NH(3) and NH(4)(+) (= NH(y)) may disturb vegetation by secondary metabolic changes due to increased NH(y) uptake and assimilation leading to higher susceptibility to abiotic (drought, frost) and biotic (pests) stress. Prevention of damage to natural and semi-natural ecosystems will only be achieved if NH(3) emissions are drastically reduced. In this paper, the current knowledge on NH(y) emission, deposition, and its effects on vegetation and ecosystems are reviewed. Critical levels and critical loads for nitrogen deposition are discussed.  相似文献   

19.
The photooxidation of C2H5NH2, (C2H5)2NH, HOC2H4NH2, (HOC2H4)2NH and (HOC2H4)3N using TiO2 and Pt/TiO2 as photocatalysts has been investigated. A laboratory set up was designed and a study on the influence of the concentration of the photocatalyst, the pH-value and the structure of the amine performed. The photocatalytic process was optimized with respect to the concentrations of the model substances during degradation. The decrease of the amine concentrations was found to be maximum at a pH of 10. The time-dependence of the formation of cationic breakdown products, such as NH3/NH4 and short-chain alkyl- and alkanolamines was studied by analyses with single column ion chromatography. The experimental data show that the photodegradation follows a Langmuir-Hinshelwood kinetic. The mineralization of the model substances also was monitored by measurements of the decrease of the TOC and of the formation of NO2 and NO3. The different mineralization efficiencies for the model substances studied are discussed with regard to their structure and adsorption behaviour on the photocatalyst. A possible breakdown mechanism involving the electrophilic attack of the hydroxyl radical is given. The applicability of the TiO2-assisted photocatalytic degradation of C2H5NH2 and (C2H5)2NH was tested at the pilot plant-scale with real solar radiation. The degradation rates and products obtained were similar to those found in the laboratory experiments.  相似文献   

20.
A thermodynamic equilibrium model was used to investigate the response of aerosol NO3 to changes in concentrations of HNO3, NH3, and H2SO4. Over a range of temperatures and relative humidities (RHs), two parameters provided sufficient information for indicating the qualitative response of aerosol NO3. The first was the excess of aerosol NH4+ plus gas-phase NH3 over the sum of HNO3, particulate NO3, and particulate SO4(2-) concentrations. The second was the ratio of particulate to total NO3 concentrations. Computation of these quantities from ambient measurements provides a means to rapidly analyze large numbers of samples and identify cases in which inorganic aerosol NO3 formation is limited by the availability of NH3. Example calculations are presented using data from three field studies. The predictions of the indicator variables and the equilibrium model are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号